
Automated Fluid Feature Extraction from

Transient Simulations

Progress Report

Robert Haimes

haimes@orville.mit.edu

and

David Lovely

February 8, 1999

NASA Ames Research Center

Agreement: NCC2-985

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

77 Massachusetts Avenue

Cambridge, MA 02139

1 Introduction

In the past, feature extraction and identification were interesting concepts, but not required

to understand the underlying physics of a steady flow field. This is because the results of

the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and

easily abstracted so they could be represented to the investigator. These tools worked

and properly conveyed the collected information at the expense of much interaction. For

unsteady flow-fields, the investigator does not have the luxury of spending time scanning

only one "snap-shot" of the simulation. Automated assistance is required in pointing out

areas of potential interest contained within the flow. This must not require a heavy compute

burden (the visualization should not significantly slow down the solution procedure for co-

processing environments like pV3). And methods must be developed to abstract the feature

and display it in a manner that physically makes sense.

The following is a list of the important physical phenomena found in transient (and

steady-state) fluid flow:

1.1 Shocks

The display of shocks is simple; a shock is a surface in 3-space. As the solution progresses, in

an unsteady simulation, the investigator can view the changing shape of the shock surfaces.

Some previous work has been done at MIT (as well as other places) on this problem. This

early work [Darmofal91] developed the following algorithm:

First determine the normal direction to the shock. Across a shock, the tangential velocity

component does not change; thus, the gradient of the speed at a shock is normal to the

shock. The exact location of the shock is then determined by calculating the magnitude of

the Mach vector, in the direction of the speed gradient, at all points in the domain. The

normal Mach number is defined as the Mach vector dotted into the speed gradient. Thus,

a positive normal Mach number indicates streamwise compression and a negative normal

Mach number indicates expansion. If this value is 1.0 then a shock has been found (or

possibly an isentropic recompression through Mach one). This entire iso-surface can be

displayed to show the shock, but must be thresholded to remove the surfaces associated

with the recompression and some stray portions of the flow field where the normal Mach

number happen to be 1.0. The magnitude of the speed gradient was found to be an effective

threshold.

1.2 Vortex Cores

Finding thesefeaturesis important for flow regimesthat arevortex dominated(mostof
which are uusteady)suchasflow overdelta wings and flow through turbine cascades.
Trackingthe corecangive insight into controllingunsteadylift and fluctuating loadings
dueto core/surfaceinteractions.

Therehasbeenmuchworkdonein the locationof thesefeaturesby many investiga-

tors. Again,therehasbeensomesuccess[Kenwright97].This particularalgorithmasfully
describedin [Sujudi95]hasbeendesignedso that no serialoperationsare required,it is
parallel,deterministic(with no 'knobs'),andthe output is minimal. Themethodoperates
on a cell at a time in the domainand disjoint linesarecreatedwherethe coreof swirling

flow is found. Only theseline segmentsneedto bedisplayed,reducingthe entire vector
field to a tiny amountof data.

This technique,althoughsatisfying,is not without problems.Theseare:

.

.

Not producing contiguous lines.

The method, by its nature, does not produce a contiguous line for the vortex core.

This is due to two reasons; (1) for element types that are not tetrahedra the inter-

polant that describes point location within the cell is not linear. This means that if

the core passes through these elements the line can display curvature. By subdivid-

ing pyramids, prisms, hexahedra and higher-order elements into tetrahedra for this

operation produces a piecewise linear approximation of that curve. And (2) there is

no guarantee that the line segments will meet up at shared faces between tetrahedra.

This is because the eigenvector associated with the real eigenvalue will not be exactly

the same in both neighbors, so when this vector is subtracted form the vector values

at the shared nodes each tetrahedra sees a differing velocity field for the face.

Locating flow features that are not vortices.

This method finds patterns of swirling flow (of which a vortex core is the prime

example). There are other situations where swirling flow is detected, specifically in the

formation of boundary layers. Most implementations of this technique do no process

cells that touch solid boundaries to avoid producing line segments in these regions.

But this does not always solve the problem. In some cases (where the boundary layer

is large in comparison to the mesh spacing) this boundary layer generation is still

found.

. Sensitive to other non-local vector features.

Critical point theory gives one classification for the flow based on the local flow quan-

tities. 3D points can display a limited number of flow topologies including swirling

flow, expansion and compression (with either acceleration or deceleration). The flow

outside this local view may be more complex and have aspects of all of these com-

ponents. The local classification will depend on the strongest type. Also if there are

two (strong) axes of swirl, the scheme will indicate a rotation that is a combination

of these rotation vectors based on the relative strength of each. This has been re-

ported by [Roth96] where the overall vortex core strength was not much greater that

the global curvature of the flow. The result was that the reported core location was

displaced from the actual vortex.

1.3 Regions of Recirculation

Recirculation is a difficult feature to locate, but a simple one to visualize. A surface exists

that separates the flow (in steady-state) so that no streamlines seeded from one side of

this surface penetrate the other side. Some work has been done in locating this feature by

computing the stream function. Also it is possible to use vector field topology to find the

extent of this region and then draw a series of streamlines connecting the critical points.

These lines can be tessellated to create this separation surface.

These methods do not work for transient problems. Like a series of instantaneous stream-

lines can be misleading in unsteady flow regimes, using techniques based on streamlines will

not represent the regions of older fluid. By using the concept of time, recirculations can be

identified as regions of fluid that are old in comparison with the core flow. therefore instead

of looking directly at flow topology we can calculate Residence Time. This is the Eulerian

view of unsteady particle tracing (a Lagrangian operation). A simple partial differential

equation can be solved on the same mesh along with the flow solver. (NOTE: This is pos-

sible when performing co-processing; the CFD solver and Residence Time calculation have

similar time limit constraints.) An iso-surface can be generated through the result so that

regions of old fluid can be separated from newer fluid elements.

Though the concept of Residence Time is used by process engineers (in particular injec-

tion molding) and those individuals concerned about environmental pollutants, it is from

the statistical standpoint. We can not find a rigorous definition in the fluid dynamics

literature.

1.4 Boundary layers

Boundary layers are features that are very important in most complex fluid flow regimes.

The size and shape of the boundary layer are used to determine such values as lift and drag

in external aerodynamics. For turbomachinery the size of the boundary layers determine the

effective solidity. With regions of recirculation, the boundary layers determine the blockage.

In all cases the boundary layer edge can be constructed as a surface (some distance away

from solid walls) in 3D flows.

There have been no successes in any known work to robustly determine the surface that

represents the extent of the boundary layer from traditional CFD solutions. Fundamentally,

this is a very difficult problem. The edge is poorly defined numerically and is more a subtle

transition that an abrupt feature.

Accurately knowing the edge of the boundary layer has many numerical benefits for

the solver. Turbulence models can be more accurately applied. Grid adaptation can place

nodes where they are needed. Split solvers (Euler in core flow, Navier-Stokes in boundary

layers) will be more stable and accurate when the position of the edge of the boundary layer

is known.

1.5 Wakes

Wakes are usually generated by the merging of boundary layers down stream from a body.

Like boundary layers, these features are important for both internal and external flows.

Knowing where, and under what circumstances, the wakes impinge on other bodies can

have a changing effect on the structural and thermal loads experienced on those surfaces.

Again, there has been no real success in finding this feature.

2 Progress Thus Far

The goal of this work is to develop a comprehensive software feature extraction tool-kit

that can be used either directly with CFD-like solvers or with the results of these types

of simulations (i.e. data files). The output of the feature "extractors" will be produced in

such a manner that it could be rendered within most visualization systems. Much effort

will be placed in further quantifying these features so that the results can be applied to

grid generation (for refinement based on the features), databases, knowledge based and

design systems. This requires two distinct phases; (1) the research into algorithms that

will accurately and reliably find these features and (2) the design and construction of the

software tool-kit.

2.1 Algorithms

2.1.1 Shocks

The procedure explained above has been re-examined. First, much effort was placed in

examining algorithms that find discontinuities in scalar fields. These techniques can be

thought of as the 3D analogue to the methods used in image processing. This approach

failed in finding shocks for the following reasons:

Sharpness.

Most CFD solvers that perform differences to compute derivative and flux quantities

do not suppress saw-tooth oscillations in the solution. These can become unstable

in even in quiescent flow (for numerical reasons) and will blow-up in the presence of

discontinuities. For this reason these CFD solvers "smooth" the flow field. This obvi-

ously reduces the ability to find sharp discontinuities since they have been removed.

Even for solvers that can handle abrupt changes in the fiow field, a shock will probably

be smeared across 2 to 3 cells.

Derivative quantities.

There tends to be noise generated when derivative quantities are computed from local

(cell based) operators. Using operators with larger stencils are possible in structured

block meshes but difficult in unstructured grids. This noise problem is amplified when

second derivatives are required.

Therefore the shock finder that requires looking for the inflection point - where the

laplacian of the laplacian of pressure (the second derivative) is zero is doomed in CFD

6

solutions.

A shockfinder hasbeendevelopedthat is a modificationof the earlywork described
above.For steadystatesolutions,the normalizedpressuregradientis usedinsteadof the

speedgradient- this is lesssusceptibleto other flow featuressuchasboundarylayers.It
hasbeenfoundthat nothresholdingisrequired.Thereis alsoanextensionfor transientso-
lutions. Seetheattacheddocument"ShockDetectionfrom ComputationalFluid Dynamics
Results".

This paperdiscussestheshocklocationtheoryin detail andpresentsmethodsfor shock
classification.Details arepresentedfor computingthe shockstrengthand type (normal,

oblique,bowandetc.). Thispaperalsohasananalysisof howto determinetheshockspeed
for transientcases.

2.1.2 Vortex Cores

Theoriginalalgorithmproducesaseriesof disjoint linesegments.Whendisplayed,the eye
puts together(or closes)a singleline, for a singlecore,(whenthe strengthof the coreis
large).This is not acceptablefor off-lineuses(thefirst problemlistedabove)in that it is
not possibleto tracethe full extentof the core.This issueis nowresolved.Enforcingthe
cell piercingto matchat cellfacesinsuresthat the line segmentsgeneratedwill producea
contiguouscore.This wasfirst attemptedvia the followingmodificationto thealgorithm:

.

.

.

Compute the V (the velocity gradient tensor) at each node.

This requires much more storage - 9 words are needed for each node in the flow field.

This has the advantage that the stencil used for the operation is larger than the cell

and therefore the result will be generally smoother.

Average the node tensors (on the face) to produce a face-based V.

This insures that the same tensor is produced for the two cells touching the face.

Perform the eigen-mode analysis on the face tensor.

If the system signifies swirling flow, determine if the swirling axis cuts through the

face by the scheme used in the current method. If, so mark the location on the face.

This scheme worked at the expense of memory and a much higher CPU load. Four

eigen-mode calculations are required for each tetrahedron instead of just one. In general,

this can be reduced to two per tetrahedron, by the additional storage of face results (about

7

3wordsper face).Note: thereareabout2 timesthenumberoffacesascellsin atetrahedral
mesh.

This wasnot a goodresult, in particular for structuredblocks,whereeachindividual
hexahedronisbrokenup into 6 tetrahedra(5, the minimumdoesnot promotefacematch-

ing). This meansthat for eachelementin the mesha minimumof 12eigen-modeanalyses
arerequired.

Theseperformanceproblemssuggestedanother,related,technique:

1. ComputetheV at each node.

2. Perform the eigen-mode analysis on the node tensor.

The tensor can be overwritten with the critical point classification and the swirl axis

vector for rotating flow.

3. Average the swirl axis vectors for the nodes that support the tetrahedral face.

This should only be done if all nodes on the face indicate swirling flow. Some care

needs to be taken to insure that the sense of the vectors are the same. Determine if

the swirling axis cuts through the face, and if so, mark the location on the face.

For tetrahedral meshes, the reduction of compute load is by a factor of 5 to 6 over the

original method (there are roughly 5.5 tetrahedra per node in 'good' unstructured grids).

For structured blocks, where the number of nodes is about equal to the number of hexahedra,

the number of eigen-mode analyses required is on the order of one per cell.

For coherent collected cores to be produced, all the disjoint lines are used to build

threaded lists. The end points now match at tetrahedron faces. Unfortunately, do to the

fact that some tetrahedra do not have 2 pierce points, special processing is required:

1 intersection

The point is used as a seed point for streamline integration. This integration only

persists until a face is hit (in the original cell -not the decomposed tetrahedron). If

there is an intersection on that face the connection is made. If the element was a

tetrahedron to begin with, or no match can be found then it is assumed that the core

as either started or ended.

3 & 4 intersection points

These connections are deferred. At the end, threads are put together to produce the

longest (most number of points) cores. This is a recursive procedure.

8

All resultantcoresegmentsthat havelessthan4 disjoint segmentsareculled.

It shouldbenotedthat thesesituationsoccur because CFD results are, by their very

nature, not smooth. Saw-tooth oscillations in the vector field can produce noisy results

locally.

This new algorithm is still linear and will produce incorrect results when the flow is

under 2 or more (relatively equal) rotating influences (the third problem listed above). A

paper [Roth98] was presented that, on first viewing, appears to solve this problem. The

authors suggest that by looking at higher-order derivatives of the velocity field one can

capture curvature. They first recast the technique described above then apply the higher-

order correction:

• Parallel alignment

An intersection point on a face is where the reduced velocity is zero. Therefore the

velocity vector is parallel to the real eigenvector of V (the velocity gradient tensor).

ff (the velocity vector) is an eigenvector of V and therefore a solution of V___=),_7.

This suggests that looking for parallel alignment is the same as the current vortex

algorithm.

• Second Order

Computing the velocity second derivatives (T) produces a 3x3x3 tensor. Checking

for alignment of the second derivative following a particle produces:

VV_7 + T_Tff = _27

In practice, this does not seem to work. First of all, as noted above, the velocity field

is not smooth. Because this technique uses the velocity directly for alignment, it produces

t_oth many false positives and misses many intersections for real CFD results. The other

problem is the storage requirements. For large data sets, requiring 27 words/node of the

second order tensor and 9 words/node for the first order tensor becomes prohibitive.

Further investigation is required.

2.1.3 Regions of Recirculation

The recirculation algorithm, Residence Time, described above requires close integration

with the flow solver. The choice is either that solver writer completely incorporates this

equation by adding one more equation to the state-vector or some co-processing system

(like the visualization suite pV3) is used.

9

Obviously,thebestplacefor this PDE is within the solver.For the secondchoice,an
API for solvingthis PDE is beingdevelopedsothat there is accessto all of the required
data. A Lax-Wendroffschemehasbeenimplementedfor time integration. Thereforeif
someimplicit or high-orderexplicit timeintegrationschemeisusedfor the solvercaremust
be taken in selectingthe time-stepsothat the solvingof the ResidenceTime equationis
stable.Thereisa call in theAPI return the maximumstabletime-step.

The paper "UsingResidenceTime for the Extraction of RecirculationRegion" (ap-
pendedto this report)describesin detailboth the theoryand implementationof the Resi-
denceTimeconcept.ThepaperdescribesthecurrentAPI. Alsoincludedwith thisprogress
report is the specificationfor thesoftwarethat wilt dedeliveredat the endof the contract.
Thisdocumenttitled "TheFluid FeatureEXtractionTool-kit" describesaslightlydifferent
interfacethat is consistentwith the otherextractiontechniques.

2.1.4 Boundary layers and Wakes

As describedin last yearsProgressReport,someprogresshasbeenmadein this difficult
arena.An algorithmisbeingconstructedthat will allowtheuseof iso-surfacingto separate
theboundarylayersandwakesfromcoreflow. The methodstemsfrom the fact that these
featuresdisplayboth rotatingflowandfluid undershearstress.This is why,sometimesthe
vortexcoretechniquegivesfalse-positivesfor locationsin boundarylayers.Therefore,with
a boundarylayerfinderweshoulclbeableto maskout thesefinds in the boundarylayer
andonly displaythoselinesthat tracebackfrom the outerflow.

To numericallydefinethesequantitiesweagainstart with theV (the velocity gradient

tensor) at each node:

Rate of Rotation.

This quantity is related to vorticity. A skew-symmetric tensor is produced by sub-

tracting the transpose of V from V. The result has zero on all of the diagonal terms

and the off-diagonal terms are symmetric but have opposite signs across the diagonal.

These values are coordinate system invariant. For this application, the norm of the

upper (or lower) terms is used for the rotation scalar. This is a measure of the rate

of solid-body rotation.

Rate of Shear Stress.

A symmetric tensor can be produced from V by adding it to its transpose. This

defines the Rate of Deformation tensor. The matrix represents both the bulk and

10

shearstressesandis dependenton the coordinatesystem.To extract a singlescalar
that is coordinatesysteminvariantandhasthe bulk termsremovedit is necessary
to diagonalizethis tensor.The resultproducesa vectorwhichsignifiesthe 'principle
axisof deformation'. By employingtechniquesfrom Solid Mechanics,the norm of
thesecondprincipalinvariantof the 'stressdeviator'canbeusedasa measureof the
shearand employedasthe scalar.

This current schemeinitially lookedpromisingbut theseproblemshavenot beenre-
solved:

• A nodebasedscalarfunctionof shearandrotation hasnot beenconstructedthat can

basedon theory.

• The valueof this functionwill probablybedimensional,havingunitsof inversetime

(thesameasshearandrotation).
This
case
with

The

meansthat the iso-surfacevalueusedto definetheedgeof the layerchangesfrom
to case.Thisscalarneedsto bemultipliedbysomecharacteristictimeassociated

theproblem.

valueusedfor the iso-surfacealsoneedsto becoupledto theory.

Thelackof progressusingthis avenuehaspromptedexamininganotherapproach.For
this workwestart from BoundaryLayerTheory.

The goal is to find a generalmethodto calculatethe displacementand momentum
thicknessof boundarylayersnear solidsurfacesin the model. Thesequantitiesare less
subjectivemeasuresof theboundarylayerthickness.Thedisplacementthicknessisrelated
to the blockageeffectcausedby the viscositynearthe body,andthe momentumthickness
is relatedto the dragon the body;both of whichare importantto designers.It mayalso
bepossibleto calculatethe blockageeffectof viscosityat a sectionin the flow passageof
turbomachinerywith thesemethods.

Theory
Themethodthat is currentlybeinginvestigatedis to integratethevorticity from the
solidsurfaceout to thefreestreamin a directionnormalto thesurface.Thevorticity

is beingusedasanapproximationto the changein velocitynormalto the wall, and
is usefulbecauseit goesto zeroin thefreestream,allowingfor a simplemarkingfor
the terminationof integration.Usingthe vorticity eliminatesthe needto determine

11

the freestreamvelocity,U, and the boundarylayerthicknessat eachpoint on the
wall. Thesevariablesarenormallyusedto definethe displacementand momentum
thickness,asshownin thefollowingequations1and 2, where_is theboundarylayer
thickness,_1is thedisplacementthicknessand _2is themomentumthickness.

_(1 u_1 -- - -_)dn (1)

j_0 _ u= y(1 -)dn (2)

The approximation to the displacement thickness is shown in equation 3 where w is

the vorticity, and the integration proceeds from the wall surface to where the vorticity

is approximately zero.

_0w=0 rw=0 udJ0 Y (3)
61_ dy- f_,=O wdy

The procedure that is being followed is outlined below:

1. Determine curves that are normal to the surface and do not intersect one another

other. This is being done by actually solving Laplace's equation on the domain

of the model, and using the gradient of this solution to define normal vectors.

2. Calculate the vorticity from the velocity components given from the CFD solu-

tion.

3. Integrate the vorticity from the surface along the normal curves until the vorticity

drops below a certain threshold. This integration yields the free stream velocity

at that surface point.

4. Use the free stream velocity value to calculate the displacement and momentum

thickness at that point.

• Result

The first test was to use analytic methods to determine if this method duplicated the

results of Blasius for a flat plate in uniform flow at zero angle of attack. Calculating

the free stream value by integrating the vorticity yields a free stream value within 1%

of the actual value.

The method was also tested by imposing a Blasius solution on a rectangular mesh and

using a numerical implementation of the method to find the displacement thickness

along the plate. The numerical results closely followed the Blasius solution of the

boundary layer thickness quantities.

12

If this approachisultimatelysuccessful,it leavesthequestionof howto dealwith wakes.
In this casethereis nobody to integratefrom!

2.2 Software Tool-kit

The initial specificationof the ApplicationProgrammingInterface(API) hasbeencom-
pleted.Thedocument"FX Programmer'sGuide:TheFluid FeatureEXtraction Tool-kit"
is includedwith this report.

TheAPI is split into 2 basicsections:

• Support
Theseare the utility and generalroutinesthat support the communication of the

information that is used to determine the spatial, temporal and partitioning of the

CFD data.

• Features

These routines return the features as 3D structures and associated quantities, such

as strength that may be displayed in visualization systems or used for other non-

interactive applications.

13

3 Presentations and Publications

One third of the SIGGRAPH '98 Course #2 ("Exploring Gigabyte Data Sets in Real Time")

was on this feature work. This lesson given by Robert Haimes was subtitled "Automatic

Flow Feature Detection - Physics-based Extraction From Transient Computational Fluid

Dynamics". There were hundreds in attendance. This same presentation has also been

given at the Army Research Lab and Sandia National Lab.

Three papers have been written and submitted to the AIAA CFD Conference to be held

this summer. These are appended to this report:

• Using Residence Time for the Extraction of Recirculation Regions

Author: Robert Haimes

• Shock Detection from Computational Fluid Dynamics Results

Authors: David Lovely and Robert Haimes

• On the Velocity Gradient Tensor and Fluid Feature Extraction

Authors: Robert Haimes and David Kenwright

The paper "Feature Extraction form Computational Fluid Dynamics" has been submit-

ted to the Communications of the ACM. The authors are David Kenwright and Robert

Haimes. This is an overview of the work performed under this contract and at NASA Ames

Research Center.

4 Technology Transfer

Individuals at Army Research Lab are currently using the test-bed for some of these algo-

rithms in conjunction with both Visual3 and pV3.

Industry and the software vendors of CFD-style scientific visualization packages have

shown great interest in incorporating this work into their systems. Pratt & Whitney is

willing to beta test the software tool-kit as it is being constructed in next years effort.

Intelligent Light (responsible for FieldView) and ICEM-CFD (whose visualization

module is called ICEM-Visual3 will be incorporating the fluid feature extraction tool-

kit into their products.

14

5 Next Years Effort

5.1 Algorithms

5.1.1 Vortex Cores

The alignment of velocity and functions of the derivatives of the velocity field warrant

further investigation. If what Roth & Peikert [Roth98] suggest can be made to function

with real CFD results then the last major difficulty with the current eigen-analysis technique

can be overcome.

5.1.2 Boundary layers and Wakes

The Boundary Layer Theory technique needs to be applied to a laminar and turbulent

pipe flow solution for two purposes. The first is to validate the method against this exact

solution, and the second is to simply extend the software tools that have been created

into three dimensions. It is also of interest to determine the effective blockage through a

sectional slice of the three dimensional model. Some theoretical work along these lines that

show that it is possible to estimate the difference in mass flow rate through a given section

with and without viscosity for the same pressure gradient. If it works, this could be used

as an indicator of performance in turbomachinery design.

After this the technique will be applied to a transient tapered cylinder model as a final

proof of this method.

Wakes then need to be addressed. This may involve coupling the Boundary Layer

Theory technique with the shear and rotation technique. By matching results in regions

where there are walls, the shear and rotation technique can be used away from the body.

5.2 Software Tool-kit

The code for the API documented in "FX Programmer's Guide: The Fluid Feature EXtraction

Tool-kit" will be written. This will be callable from FORTRAN (both F77 and F90) as well

as C and C++ and be accessible from all UNIX platforms and WindowsNT.

At the end of the contract the source for this work will be made freely available.

15

6 References

Darmofal91 David Darmofal, "Hierarchical Visualization of Three= Dimensional Vortical

Flow Calculations". MIT Thesis and CFDL-TR-91-2, March 1991.

Kenwright97 David Kenwright and Robert Haimes, "Vortex Indetification - Applications

in Aerodynamics". IEEE Computer Society, Visualization '97, Oct. 1997. Awarded

'Best Case-Study'.

Sujudi95 David Sujudi and Robert Haimes, "Identification of Swirling Flow in 3-D Vector

Fields". AIAA Paper 95-1715, San Diego CA, June 1995.

Roth96 M. Roth and R. Peikert, "Flow Visualization for Turbomachinery Design". IEEE

Computer Society, Visualization '96, Oct. 1996.

Roth98 M. Roth and R. Peikert, "A Higher-Order Method For Finding Vortex Core Lines".

IEEE Computer Society, Visualization '98, Oct. 1998.

16

PROPOSED COST ESTIMATE

4/1/9 9 -- 3/31/0 0

SALARIES & WAGES

Principal Research Engineer (Haimes)

Res. Support Personnel

Res. Support Personnel
Research Assistant (SM Candidate)

TOTAL SALARIES & WAGES

EMPLOYEE BENEFITS (excluding UROP & RAs) @

VACATION ACCRUAL (excluding Faculty,UROP & RAs) @

OTHER COSTS

Travel (Domestic)

Computation

Office Supplies, xerox, toll calls, postage
Research Assistant Tuition

TOTALOTHER COSTS

TOTAL DIRECT COSTS

FACILITIES& ADMINISTRATIVE excluding Tuition & Equipment @

Effort

10.0%

3.3%

2.5%

5O%

26.7%
11%

63.5%

Tot_

9,333

1,878
720

6,258

18,189

3,185

1,313

1,840

1,200
300

12,312

15,652

38,339

16,528

TOTAL 54,867

FX Programmer's Guide

Rev. 0.00 (initial specification)

The Fluid Feature EXtraction Tool-kit

Bob Haimes

Massachusetts Institute of Technology

February 8, 1999

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of

Technology (M.I.T.) under the following license. By obtaining, using and/or copying this

software, you agree that you have read, understood, and will comply with these terms and

conditions:

Permission to use, copy, modify and distribute, this software and its documentation for

any purpose and without fee or royalty is hereby granted, provided that you agree to comply

with the following copyright notice and statements, including the disclaimer, and that the

same appear on ALL copies of the software and documentation:

Copyright 1999 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS", AND M.I.T. MAKES NO REPRESEN-

TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT

NOT LIMITATION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT

THE USE OF THE LICENSED SOFTWARE OR DOCUMENTATION WILL NOT IN-

FRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER

RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used

in advertising or publicity pertaining to distribution of the software. Title to copyright in

this software and any associated documentation shall at all times remain with M.I.T., and

USER agrees to preserve same.

Contents

1 Introduction 5

2 Programming Overview 6

2.1 Domain Decomposition 6

2.2 Node Numbering 6

2.3 Cell Numbering 7

2.4 Blanking 8

2.5 Surfaces 8

2.6 Programming Notation 9

2.7 Calling Sequences 10

3 Programmer-called subroutines 13

3.1 FX_Init 13

3.2 FX_Update 14

3.3 FX_Free 14

4 Call-backs 15

4.1 FXcell 15

4.2 FXcellPtr 15

4.3 FXsurface 17

4.4 FXsurfacePtr 17

4.5 FXgrid 18

4.6 FXgridPtr 18

4.7 FXblank 18

4.8 FXblankPtr 18

4.9 FXvel 19

4.10 FXvelPtr 19

4.11 FXscal 19

4.12 FXstruc 20

5 Shock Routines 21

5.1 FX_ShockFind 21

5.2 FX_ShockSurface................................. 21

6 Vortex Core Routine 22

6.1 FX_VortexCore.................................. 22

7 Residence Time Routines 23

7.1 FX_RTParams 23

7.2 FX_RTSolve.................................... 23

7.3 FX_RTTimeStep................................. 23

7.4 FX_RTGet 23

7.5 FX_RTSurface 24

7.6 FXmodifyRT 24

8 Boundary Layer/Wake Routine 25

8.1 FX_BLSurface 25

4

1 Introduction

FX is the newest in a series of graphics and visualization tools to come out of the De-

partment of Aeronautics and Astronautics at MIT. FX (which stands for Fluid Feature

EXtraction) is designed to work with the results of Computational Fluid Dynamics in ei-

ther steady-state of in a co-processing transient mode. The end result is the extraction of

the feature so that it can be used directly with a visualization (such as Visual3 or pV3)

or applied to some "off-line" procedure such as mesh enrichment.

The FX tool-kit can be used directly with solvers and has been designed to function

in parallel/distributed environments. This has required supporting a fairly complete set of

grid discretizations as well as domain decomposition (partitioning).

The Application Programming Interface (API) is split into 2 basic sections:

• Support

These are the utility and general routines that support the communication of the

information that is used to determine the spatial, temporal and partitioning of the

CFD data.

• Features

These routines return the features as 3D structures and associated quantities, such

as strength that may be displayed in visualization systems or used for other non-

interactive ("off-line") applications.

5

2 Programming Overview

Before presenting the subroutine argument lists in detail it is helpful to discuss, in general

terms, the data structures which the programmer supplies to FX. In some cases these

data structures can be taken directly from either Visual3 or pV3). See the appropriate

Advanced Programmer's Guide.

The programmer gives FX a list of unconnected cells and structured blocks. The disjoint

cells are of four types; tetrahedra, pyramids, prisms and hexahedra. This element generality

covers almost all data structures being used in current computational algorithms. Any

special cell type which is different must be split up into some combination of these primitives

by the programmer. Linear interpolation is used throughout FX, so high order elements

must be also be subdivided so that the linear interpolation assumption is valid.

The volume(s) are defined by face matching of the elements (based on equating node

numbering). Any exposed face (not shared by 2 cells) must be treated as either a boundary

(a domain surface in Visual3/pV3 terminology) or covered with halo cells. Therefore

for multi-structured block cases, the surfaces that are actually inside the volume must be

treated so that FX can patch them together.

Note: Poly-tetrahedral strips are not supported.

2.1 Domain Decomposition

The FX tool-kit requires the calculation of spatial derivatives. This is performed in a finite-

element manner. If the data is not completely resident within one computer, additional

information is required so that the result is consistent. For all internal boundaries (created

by the partitioning of the data) a halo of cells is required. This halo is constructed by

including all the cells that touch a node on the boundary that exist in the neighboring

partition. This produces additional cells and nodes in partition. These are differentiated in

the programming interface.

It should be noted for unstructured meshes that this will require more elements than

those whose faces touch the boundary.

2.2 Node Numbering

The node numbering used within FX is local. For distributed memory cases information is

required for the halo region(s). This is done by adding the nodes required to produce these

cells at the end of the node space. It is the responsibility of the calling application to do

any message passing and node number re-mapping so that the halo information is correct.

6

The nodenumberinguseddifferentiatesbetweenthe nodesin the non-blockregions

(formedby the disjointcells),thestructuredblocks,andthe haloregions.Figure1 shows
a schematicof the nodespace,knode is the numberof nodesfor the non-blockgrid. Each
structuredblock (m) addsNI, n * NJ, n * NKm nodes to the node space (where NI, NJ

and NK are the number of nodes in each direction). The node numbering within the block

follows the memory storage, that is, (ij,k) in FORTRAN and [k][j][i] in C. The FX node

number = base + i + (j - 1) * NIm + (k - 1) * Nim * NJm. Where base is knode for the

first block, and knode plus the number of nodes in the first block for the second, and etc.

Note: all indices start at 1.

Blocks

1 knode nnode nnode+
nhalo

Figure 1: Node Space

nhalo is the number of nodes added to the domain for the halo elements. This is zero

for a case with a single partition.

2.3 Cell Numbering

The non-block cell types may contain nodes from the non-block and the structured block

volumes but not from the halo nodes. The cell numbering used within FX orders the cells

by type. Figure 2 shows a schematic of the cell space. The programmer explicitly defines

all non-block cells by the call FXcell or provides the pointers by the call-back FXcellPtr.

Again the cells within the blocks are defined by the block size. Each structured block (m)

adds (NIm - 1) • (NJrn - 1) * (NKm - 1) cells to cell space. The cell numbering within the

block follows the memory storage so that a FX cell number = base + i + (j - 1) • (NIm -

1) + (k - 1) * (NIm - 1) * (NJrn - 1). Where base is nTets+nPyra+ nPrism+nHexa for

the first block, and this value plus the number of cells in the first block for the second, and

etc.

Note: i goes from 1 to NIm - 1, j goes from 1 to NJ, n - 1, and k goes from 1 to NKm - 1.

There are individual structures for each element type. This provides compatibility with

both Visual3 and pV3 and minimizes the amount of memory required to fully describe

complex gridding. The halo cells are handled in a different manner. Each cell is disjoint

7

Tetras Pyramids Prisms Hexas Blocks

1 nTets nTets+ nTets+ nTets+ ncells
nPyra nPyra+ nPyra+

nPrism nPrism+
nHexa

Figure2: CellSpace

(eithera tetrahedron,pyramid,prism or hexahedron)and is storedin the samestructure.
Nodeindicesthat makeup the halo cellsmustcontainat leastonenon-halonodeandat
leastonehalonode(index> nnode). Theexceptionto this is whenblocksarepatchedor
for C mesheswhereall nodeindicescanbe from thenon-halos.

Again,the numberingis localfor multipleprocessorapplications.

2.4 Blanking

Blankingis anoption(seethe descriptionof FX_Init) andonlyusedwith structuredblocks
to indicatethat someregionof theblockis 'turnedoff'. A part of ablockis deactivatedby
flaggingthe appropriatenodesasinvalid. This is doneby an IBLANK array. An invalid
nodeis neverused.

Whenblankingis used,all the nodes(nnode - knode) in the structuredblockspace
aregivena value;zerocorrespondsto an invalid meshpoint, anynon-zerovalueindicates
anexistingnodepoint.

2.5 Surfaces

In principle,all exposedfacetscouldbe groupedtogetherto form oneboundingsurface.
However,in manyapplicationsit is moreusefulto split theboundingsurfaceintoa number
of pieces,referredto in Visual3 andpV3 documentationasdomain surfaces. For example,

the outer bounding surface of a calculation of airflow past a half-aircraft (using symmetry

to reduce the computation) would typically be split into four pieces, the inflow boundary,

the outflow, the symmetry plane, the aircraft. The Residence Time functions of FX require

information on which exposed facets to apply what boundary condition. These must be

classified as either inflow, outflow, periodic/equivalence and no-flux (wall).

Internal surfaces are those that get created when the computational domain is sub-

divided and placed in multiple machines. These artificial surfaces are handled by the halo

elementssoit appearsto FX that they donot exist.

2.6 Programming Notation

FX wasdesignedto beaccessiblefrombothFORTRANandC. FORTRANis morerestric-
tive in argumentpassingandnaming,thereforeit has shaped the programming interface.

The routine descriptions in this guide are from the C programmer's point of view. But

because FORTRAN is supported with the same API all routine arguments are pass by

reference. It is assumed that a routine's argument is not modified unless documented as

such.

For IBM and HP ports, all FX entry points are the FORTRAN names in lower-case.

On all other platforms except the CRAY and WindowsNT, external entries are lower-case

with an underscore ('_') appended to the end. CRAY entry points are upper-case with

no appended underscores. WindowsNT entry points must be declared as __stdcall and

are upper-case with no appended underscores. See the file 'FX.h' in the distribution for a

method to avoid these problems.

Consistent with the Visual3 and pV3 naming conventions, the routines that are part

of the FX tool-kit are prefixed with 'FX_', those that are supplied by the programmer

start with 'FX' and do not have an underscore as the next character. There are a number

of pairs of these programmer-supplied call-backs. These pairs exist in order in conserve

memory, that is if the programmer already has the data in the proper form then the pointer

to that data is passed to FX. Otherwise FX allocates the appropriate memory and it is

the responsibility of the call-back to fill that structure. Only one of the pair will be called

during the FX session. The naming convention is the routine that returns the pointer has

a name with the 'PTR' suffix.

2.7 Calling Sequences

TheFX tool-kit supportssteady-stateaswellasthreetypesof unsteadiness.In a multiple
partition simulation,eachsub-domaincanhavea differenttransient mode. Eachmode
causesadifferentinternalcallingsequence.In general,theapplicationmustfirst callFX_Init
to initialize the FX systemand thencall FX_Updateafter everytime the solutionspace
hasbeenupdated. A schematicof a typical CFD solverscouplingwith FX canbe seen
in Figure 3. The nameFX_extractis an indicationof any seriesof underscore routines

documented in Sections 5 to 8.

I Initialize solver I

i
[Calcluate BCs]

I C°m__°_s I

[SmoothingStep_ _

I Report Iteration

Update Field

)

FX_.Init(...)

FX_Update(time) _-*

FX_extract (...)

_ FXstruc (opt)]
FXcell]

I
_Xsur_coJ

FXgrid

FXblank (opt)]

FXvel I

others...

Flow Solver FX calls

Figure 3: Co-processing Calling sequence

FX call-backs

10

• Steady-State

Call

FXlnit

FX_Update

Calls in Sequence

FXcell or FXcellPtr (optional)

FXsurface or FXsurfacePtr

FXgrid or FXgridPtr

FXBlank or FXblankPtr (optional)

NOT required

FX_extract FXvel or FXvelPtr

other call-backs as needed

• Data Unsteady

Call

FX_Init

FX_Update

FX_extract

Calls in Sequence

FXcell or FXcellPtr (optional)

FXsurface or FXsurfacePtr

FXgrid or FXgridPtr

FXBlank or FXblankPtr (optional)

NONE

FXvel or FXvelPtr

other call-backs as needed

• Grid Unsteady

Call

FX_Init

FX_Update

FX_extract

Calls in Sequence

FXcell or FXcellPtr (optional)

FXsurface or FXsurfacePtr

FXgrid or FXgridPtr

FXBlank or FXblankPtr (optional)

FXvel or FXvelPtr

other call-backs as needed

11

• StructureUnsteady

Call
FX_Init

FX_Update

FX_extract

Callsin Sequence
NONE

FXstruc

FXcell or FXcellPtr (optional)

FXsurface or FXsurfacePtr

FXgrid or FXgridPtr

FXBlank or FXblankPtr (optional)

FXvel or FXvelPtr

other call-backs as needed

12

3 Programmer-called subroutines

3.1 FX_Init

FX__INIT(IOPT, KNODE, NHALO, NTETS, NPYRA, NPRISM, NHEXA,

NBLOCK, BLOCKS, NHCELL, NSURF, NBC, FLAGS)

This subroutine initializes the FX tool-kit. Calling this routine defines the type of case and

the sizes of various parameters having to do with the volume discretization. This calling

sequence also defines how and which call-backs are invoked so that FX can get the required

data. This routine must only be called once.

int *IOPT

int *KNODE

int *NHALO

int *NTETS

int *NPYRA

int *NPRISM

int *NHEXA

int *NBLOCK

int BLOCKS_[6]

int *NHCELL

int *NSURF

int *NBC

Unsteady control parameter

IOPT--0 steady grid and data

IOPT--1 steady grid and unsteady data

IOPT--2 unsteady grid and data

IOPT--3 structure unsteady

Number of non-block nodes

Number of halo nodes

Number of tetrahedra

Number of pyramids

Number of prisms

Number of hexahedra

Number of structured blocks

BLOCKS[m][1]

BLOCKS[m][2]

BLOCKS[m][3]

BLOCKS[m][4]

Structured block definitions:

BLOCKS[m][0] = NI

= NJ

= NK

= cell number that terminates the block

= node number that terminates the block

BLOCKS[m][5] = Not used by FX

Number of halo elements

Number of domain surface facets

Number of domain surface groups (boundary conditions)

13

int *FLAGS The call mask:

bit 0 - 1/0 = 0 - call FXcell for the disjoint cell data,

1 - call FXcellPtr for the disjoint information.

bit 1 - 2/0 = 0 - call FXsurface for the Boundary Con-

dition data, 2 - call FXsurfacePtr for the Boundary

Conditions.

bit 2 - 4/0 = 0- call FXgrid for coordinates,

4 - call FXgridPtr for using the pointer.

bit 3 - 8/0 = 0 - call FXvect for the flow vector field,

8 - call FXvectPtr for using a pointer.

bit 4 - 16/0 = 0 - no Blanking, 16 - Blanking.

bit 5 - 32/0 = 0 - FXblank is called for Blanking,

32 - FXBlankPtr iscalled.

Note:

For structure unsteady cases (IOPT -- 3), the parameters that describe the sizes of the

node and cell space should be a good guess at the sizes used during the simulation. For

structured block cases, NBLOCK must be the maximum number of blocks for the run. The

current sizes are set by a call to FXstruc from within FX_Update.

3.2 FX_Update

FX_UPDATE (TIME)

This subroutine must be called after the solver has updated the solution space. This is when

all communication between any partitions is complete including the messages required to

transmit the halo data. The call to this routine is not needed if IOPT -- O.

float *TIME The current simulation time.

3.3 FX_Free

FX_FREE(PTR)

This function is equivalent to the C routine 'free'. It deallocates a block of memory. NOTE:

Use this utility routine to free up blocks of that have been allocated by FX and returned

when they are no longer needed. These pointers are labeled as freeable in the routine

definition.

void **PTR The address of the memory block.

14

4 Call-backs

4.1 FXcell

FXCELL(TETS, PYRA, PRISM, HEXA, HCELL)

This subroutine supplies FX with the grid data structure. It is not required for a grid that

contains only structured blocks and no halo cells.

int TETS[NTETS][4]

int PYRA[NPYRA][5]

int PRISM[NPRISM][6]

int HEXA[NHEXA][8]

int HCELL[NHCELL][9]

Node indices for tetrahedral cells (filled)

Node indices for pyramid cells (filled)

Node indices for prism cells (filled)

Node indices for hexahedral cells (filled)

Halo cell descriptions (filled)

HCELL[m][0-7] = Node indices for the cell

HCELL[m][8] --- 1 - tetrahedron, 2- pyramid, 3- prism,

4 - hexahedron

The correct order for numbering nodes for the four disjoint cell types is shown in Fig. 4.

4.2 FXcellPtr

FXCELLPTR(PTETS, PPYRA, PPRISM, PHEXA, HCELL)

This subroutine supplies FX with the pointers to grid data structure. It is not required for

a grid that contains only structured blocks and no halo cells.

int **PTETS

int **PPYRA

int **PPRISM

int **PHEXA

int HCELL[NHCELL][9]

Pointer to node indices for tetrahedral cells (returned)

Pointer to node indices for pyramid cells (returned)

Pointer to node indices for prism cells (returned)

Pointer to node indices for hexahedral cells (returned)

Halo cell descriptions (filled)

HCELL[m][0-7] = Node indices for the cell

HCELL[m][8] = 1 - tetrahedron, 2- pyramid, 3 - prism,

4 - hexahedron

15

2

1

\

/

1 /

5
t

4L-_
/

1---------_

face nodes

1 123

2 234

3 341

4 412

Tetrahedron

face nodes

1 1234

2 235

3 345

4 451

5 512

Pyramid

Nce nodes

1 1234

2 2561

3 3465

4 461

5 523

Prism

_ce nodes

1 1234

2 2376

3 3487

4 4851

5 5678

6 6512

Hexahedron

Figure 4: Disjoint cell types and node/face numbering

16

4.3 FXsurface

FXSURFACE(NSURF, SCEL)

This subroutine supplies FX with the surface data structure. This specifies that these are

exposed facets and indicates the type of boundary condition to apply.

int NSURF[NBC][2] NSURF[m][0] is the pointer to the end of domain bound-

ary group n, i.e. it contains the index to the last entry in

SCEL for that group. NSURF[m][1] is the boundary type:

1 inflow

2 outflow

3 wall

4 wall (slip)

5 symmetry

6 nothing - extrapolate

int SCEL[KSURF][4] node numbers for surface faces. For quadrilateral faces

SCEL must be ordered clockwise or counter-clockwise; for

triangular faces, SCEL[m][3] must be set to zero. (filled)

Note:

The correct order for numbering faces for the four disjoint cell types is shown in Fig. 4.

For structured blocks; face #1 is for exposed cells with cell index k = 1, face #2 is for

i = NIm - 1, face #3 is for cells with j = NJ, n - 1, face #4 is for i = 1, face #5 is

associated with k = NKm - 1, and face #6 is for j = 1.

4.4 FXsurfacePtr

FXSURFACEPTR(NSURF, PSCEL)

This subroutine supplies FX with the surface data pointer. This specifies that these are

exposed facets and indicates the type of boundary condition to apply.

int NSURF[NBC][2] NSURF[m][0] is the pointer to the end of domain bound-

ary group n, i.e. it contains the index to the last entry in

SCEL for that group.

NSURF[m][1] is the boundary type.

int **PSCEL pointer to the structure containing node numbers for sur-

face faces (returned)

17

4.5 FXgrid

FXGRID(XYZ,HXYZ)

This subroutine supplies FX with the grid coordinates for all of the nodes.

float XYZ[NNODE][3]

float HXYZ[NHALO][3]

(x, y, z)-coordinates of grid nodes (filled)

(x, y, z)-coordinates of halo grid nodes (filled)

4.6 FXgridPtr

FXGRIDPTR(PXYZ,HXYZ)

This subroutine supplies FX with the pointer to the grid coordinates for all of the nodes.

float **PXYZ

float HXYZ[NHALO][3]

the pointer to the structure containing (x, y, z)-coordinates

of grid nodes (returned)

(x, y, z)-coordinates of halo grid nodes (filled)

4.7 FXblank

FXBLANK(IBLANK)

This subroutinesuppliesFX with blanking data.

FLAGS (ofFX_Init).

Required for bit 4 on and bit 5 off in

int IBLANK[NNODE-KNODE] Blanking data (filled):

= 0 off, invalid node

#Oon

4.8 FXblankPtr

FXBLANKPTR(PIBLANK)

This subroutinesuppliesFX with a pointerto the blanking data.

and bit5 on inFLAGS (ofFX_Init).

Required for bit 4 on

int **PIBLANK pointer to blanking data (returned)

18

4.9 FXvel

FXVEL(V,HV)

This subroutine supplies FX with the velocity field.

float V[NNODE] [3]

float HV[NHALO][3]

Velocity function values (Vz, Vy, Vz) (filled)

Halo velocity function values (Vx, Vy, Vz) (filled)

4.10 FXvelPtr

FXVELPTR(PV,HV)

This subroutine supplies FX with the pointer to the velocity field.

float **PV

float HV[NHAL0][3]

Pointer to the Velocity structure (returned)

Halo velocity function values (Vx, Vy, Vz) (filled)

4.11 FXscal

FXSCAL(TYPE,S,HS)

This subroutine supplies FX with the specified scalar field.

int TYPE Scalar field indicator

float S[NNODE] Scalar functional values based on TYPE (filled):

TYPE -- 1 - density

TYPE -- 2- pressure

TYPE -- 3 - Mach number

TYPE -- 4 - Total viscosity (laminar and turbulent)

TYPE -- 5 - Enthalpy

Halo scalar functional values based on TYPEfloat HS[NHALO]

19

4.12 FXstruc

FXSTRUC(KNODE, NHALO, NTETS, NPYRA, NPRISM, NHEXA,

NBLOCK, BLOCKS, NHCELL, NSURF, NBC)

This subroutine is required for structure unsteady cases (IOPT = 3) only. This routine

supplies the sizes of the current state of the problem.

int *KNODE

int *NHALO

int *NTETS

int *NPYRA

int *NPRISM

int *NHEXA

int *NBLOCK

int BLOCKS_[6]

int *NHCELL

int *NSURF

int *NBC

Number of non-block nodes / static flag

Number of halo nodes

Number of tetrahedra

Number of pyramids

Number of prisms

Number of hexahedra

Number of structured blocks

Structured block definitions

Number of halo elements

Number of domain surface facets

Number of domain surface groups (boundary conditions)

Note:

If KNODE is -1 that is a special flag to indicate that the structure has NOT changed

for this iteration. With this flag set, no other parameters should be modified, in that FX

reverts to the grid unsteady calling sequence.

2O

5 Shock Routines

5.1 FX_ShockFind

FX_.SHOCKFIND (TEST)

This subroutinereturnsthe resultofthe shock testfunction.

float TEST[NNODE] Any value greater than 1.0 is an indication that the node

is in a shock region.

5.2 FX_ShockSurface

FX_SHOCKSURFACE(TEST, NSPTS, PSXYZ, NSTRIS, PSTRIS, PSCELL)

This subroutinetakesthe shock testfunction,generatesand returnsthe surface(s)at the

value 1.0. The surface(s)can be constructedfrom the triangleindices(biasI) into the

shock nodes pointed to by PSXYZ.

float TEST[NNODE]

int *NSPTS

float **PSXYZ

int *NSTRIS

int**PSTRIS

int **PSCELL

This must be the data returned by FX_ShockFind.

The number of points that support the shock surface (re-

turned)

Pointer to the block of memory (freeable) that contains

the coordinates (returned)

The memory block is of the form SXYZ[NSPTS][3].

The number of triangles that make up the surface (re-

turned)

Pointer to the block of memory (freeable) that contains

the triangle indices (returned)

The memory block is of the form STRIS[NSTRIS][3].

Pointer to the block of memory (freeable) that contains

the cell indices for the triangle (returned)

The memory block is of the form SCELL[NSTRIS].

21

6 Vortex Core Routine

6.1 FX_VortexCore

FX_VORTEXCORE(NVCSEG, PVCSEG, PVCXYZ, PVCCELL, PVCSTREN)

This routine returns the vortices found in the domain. They are processed as a number of

segments each with a particular length.

int *NVCSEG

int **PVCSEG

float **PVCXYZ

int **PVCCELL

float **PVCSTREN

The number of vortex core segments (returned)

Pointer to the block of memory (freeable) that contains

the core end point indices (returned)

The memory block is of the form VCSEG[NVCSEG].

Pointer to the block of memory (freeable) that contains

the vortex core points for all segments (returned)

The memory block is of the form

VCXYZ[VCSEG[NVCSEG-1]][3].

Pointer to the block of memory (freeable) that contains

the cell indices for the vortex core points (returned)

The first value in a segment refers to the cell that contains

the first 2 points. Therefore the last cell value in a segment

does not contain any valid data. The memory block is of

the form VCCELL[VCSEG[NVCSEG-1]].

Pointer to the block of memory (freeable) that contains

the vortex core strength (returned)

The memory block is of the form

VCSTREN[VCSEG [NVCSEG-1]].

22

7 Residence Time Routines

7.1 FX_RTParams

FX_RTPARAMS(RTTYPE, SM2, SM4, KAPPA)

This routine must be called before any other residence time functions. It is best to put this

call after FX_Init when computing residence time. All parameters are input.

int *RTTYPE 0 to 3 for inviscid incompressible, viscous compressible,

constant viscosity and density and inviscid compressible,

respectively.

float *SM2 second-difference smoothing coefficient (a2).

float *SM4 fourth-difference smoothing coefficient (a4).

float *KAPPA a = _, required for RTYPE = 2 only.

7.2 FX_RTSolve

FX_RTSOLVE 0

This routinemust be calledafterFX_Update to integratethe residencetime equation for

the time-step.

No Arguments

7.3 FX_RTTimeStep

FX_RTTIMESTEP (MAXDT)

This routine can be called to get the current maximum delta-time that may be used to

insure stability. The residence time equation has less of a time step constraint than either

the Euler of Navier-Stokes equations, so this is not required for co-processing with explicit

solvers. This call may be required when using residence time integration with steady-state

solutions.

float *MAXDT The maximum delta-time that is acceptable.

7.4 FX_RTGet

FX_RTGET (RT)

This subroutinereturnsthe resultof the shock testfunction.

float RT[NNODE] The residence time for each node in the domain.

23

7.5 FX_RTSurface

FX_RTSURFACE(RT, RTV, NRTPT, PRTXYZ, NRTTRI, PRTTRI,
PRTCELL)

This subroutinetakestheresidencetimevalueg,generatesandreturnsthe surface(s)at the
valueRTV. The surface(s)canbe constructedfrom the triangle indices(bias 1) into the

residencetime nodespointedto by PRTXYZ.

float RT[NNODE]

float *RTV

int *NRTPT

float **PRTXYZ

int *NRTTRI

int **PRTTRI

int **PRTCELL

This mustbe the data returnedby FX_RTGet.

This is the residencetime valueusedto generatethe sur-
face.

Thenumberofpointsthat supporttheresidencetimesur-
face(returned)

Pointerto the blockof memory(freeable)that contains

the coordinates(returned)
The memoryblockis of the formRTXYZ[NRTPT][3].

The numberof trianglesthat makeup the surface(re-

turned)

Pointer to the block of memory(freeable)that contains
the triangleindices(returned)
Thememoryblockis of the form RTTRI[NRTTRI][3].

Pointerto the block of memory (freeable)that contains
the cell indicesfor thetriangle (returned)
The memoryblockis of theform RTCELL[NRTTRI].

7.6 FXmodifyRT

FXMODIFYRT (RT, DRT)
This optionalcall-backis invokedfrom FX_RTSolveandexposesboth the internalarrayof
residencetime valuesandthe deltasto beapplied.This iscalledjust beforethevaluesare
updated.FXmodifyRTallowsthe modificationof either RT or DRT directly. This is re-
quiredfor specialboundaryconditions,suchasmovinginterfacesor othersnotsupported.

floatRT[NNODE]

floatDRT[NNODE]

Node based residence time values.

Node based updates of the residence time values.

24

8 Boundary Layer/Wake Routine

8.1 FX_BLSurface

FX__BLSURFACE(NBLPTS, PBLXYZ, PBLD, NBLTRIS, PBLTRIS,

PBLCELL)

This subroutine returns the boundary layer and wake surfaces found with the domain. The

surface(s) can be reconstructed from the triangle indices (bias 1) into the BL nodes pointed

to by PBLXYZ.

int *NBLPTS

float **PBLXYZ

float **PBLD

int *NBLTRIS

int **PBLTRIS

int **PBLCELL

The number of points that support the boundary layers

(returned)

Pointer to the block of memory (freeable) that contains

the coordinates (returned)

The memory block is of the form BLXYZ[NBLPTS][3].

Pointer to the block of memory (freeable) that contains

the thickness - a negative value is the indication of a wake

(returned)

The memory block is of the form BLD[NBLPTS].

The number of triangles that make up the boundary layer(s)

(returned)

Pointer to the block of memory (freeable) that contains

the triangle indices (returned)

The memory block is of the form BLTRIS[NBLTRIS][3].

Pointer to the block of memory (freeable) that contains

the cell indices for the triangle (returned)

The memory block is of the form BLCELL[NBLTRIS].

25

Using Residence Time for the Extraction of

Recirculation Regions

Robert Haimes*

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology, Cambridge, MA 02139

haimes@orville.mit.edu

This paper introduces the concept of residence-time, from the Eulerian view point,
in a rigorous manner. The equations for various flow regimes are derived and a numerical
solver is introduced based on Lax-Wendroff integration. An implementation is discussed
that allows the coupling of this solver to any explicit CFD code. Examples of this concept
are shown for extracting recirculation regions by segregating old fluid from fluid that has
not been in the simulation for much time. The comparison of iso-surfaces generated using
this procedure and separation surfaces are examined.

Introduction

In the past, feature extraction and identification

were interesting concepts, but not required to under-
stand the underlying physics of a steady flow field.
This is because the results of the more traditional

tools like iso-surfaces, cuts and streamlines were more

interactive and easily abstracted so they could be rep-

resented to the investigator. These tools worked and

properly conveyed the collected information at the ex-

pense of much interaction. For unsteady flow-fields,
the investigator does not have the luxury of spending

time scanning only one "snap-shot" of the simulation.

Automated assistance is required in pointing out areas

of potential interest contained within the flow.
Automated feature detection and identification pro-

cedures are being developed for the examination of 3D
transient simulations. This software tool-kit will al-

low for the post-processing or co-processing visualiza-

tion of Computational Fluid Dynamics results where
the features are displayed in a manner that physi-

cally makes sense. Also, these techniques will allow
"off-line" procedures like grid adaptation and design

optimization to use the physics found in the flow-field

to perform the desired task.

This paper discusses a technique that locates regions

of recirculation in both steady-state and transient so-
lutions.

Flow separation represents interesting, and some-

times important, features in many flow regimes. In

combustion, swirling flow is used to enhance mixing

but can also cause isolated regions of flow that do not

quickly leave the system. These regions may be high-

temperature and therefore can have a negative impact
on the lifetime of the unit. Similarly, in turbomachin-

ery, separated flows are associated with extremely hot

regions where high-speed flow exiting the combustor

"Principal Research Engineer
Copyright _ 1999 by Robert Hairnes. Publizhed by the Arnericln Insti-

tote of Aeronsuilc, and Astronautics, Inc. with perrni|sion.

has stagnated. These hot spots are undesirable since
the allowable operating stress of the turbine blades is

closely related to temperature. In flow over a wing,

the adverse pressure gradient on the wing upper sur-

face can lead to separated flow casuing a drastic loss of

lift (or stalling) and a significant increase in pressure

drag.

The importance of separated flow motivates the de-

velopment of a tool which can automatically locate

these regions. Ideally for steady-state flows, this tool

can operate directly on the vector field imported from
the flow solution. For transient simulations each time

slice of unsteady data should be all that is required,

without other types of data or information from other
time levels. This reduces the amount of memory re-

quired.

Individuals investigating the results of CFD simula-
tions have historically seeded streamlines (in steady-

state flows) to determine where there are regions of

recirculation. With a numerically accurate stream-

line integration scheme, recirculation is found when
a streamline is "trapped" in the flow-field. In this case

the streamline, going up-stream or down-stream from

a point within the region, does not leave the region.

The boundary of this region is a surface - the sep-

aration surface. There are a number of problems in

automating this interactive procedure:

Locating the region. Automatically seeding

streamline to find these regions is difficult, indeed.

Any streamline started outside the region will not
enter. Therefore, one can not use the in-flow of

the domain as a starting point. One would need

to seed large numbers of streamlines so that ev-

ery cell in the mesh is touched to insure that the

region(s) are found.

• Cost. Clearly, the cost of such a procedure would
be prohibitive. There is also the issue of stopping

1OF9

the integration once a point inside the region is
found.

• Constructing the surface. It is not obvious how

one takes the outer "husk" of the trapped stream-
lines and then construct the separation surface.

The discussion up to this point assumes steady-state

flow. It is unclear how a recirculation region should be

defined in unsteady flows since a region that appears

to be recirculating at an instantaneous time slice might

actually be moving with the flow as time progresses.
It is well known that examining streamlines to under-

stand transient flows can be misleading. Streaklines
need to be used.

Helman and Hesselink 1,2 have developed a visual-

ization scheme for generating separation surfaces using

only the solution's vector field. The scheme starts by
finding the critical points on the surface of the ob-

ject. Streamlines are integrated along the principal

directions of certain classes of critical points and then
linked to the critical points to produce a 2-D skele-

ton of the flow topology near the object. Streamlines

are integrated out to the external flow starting from
points along certain curves in the skeleton. These

streamlines are then tessellated to generate the sepa-

ration surfaces. With this approach, difficulties might

be encountered in integrating streamlines from critical

points, and also in finding separated regions that are
not attached to an object.

Sujudi 3 attempted an eigen-analysis technique look-

ing for topology where the flow is diverging locally

from a plane. This was done after the success of finding

vortices by looking for swirling flow, also see Sujudi. 4
This technique was determined to be unreliable. Crit-

ical point theory only provides a single classification

based on the strongest local topology. In most sep-

arated flow regimes there are areas where the swirl

component is much greater than the diverging topol-
ogy. This can overwhelm the ability to locate the

separation surface. But, Kenwright 5 has had some

success in using 2D critical points for finding surface
separation and attachment lines. Both the vortex core

finder 4,6 and the finder of surface separation and at-

tachment line work well in transient regimes.

This paper discusses a method that attempts to

stay within the streamline/streakline definition of a
separated region but applies a transformation from

Lagrangian (moving with the massless particle) to an
Eulerian point of view (fixed within a grid and watch-

ing the fluid flow past). The concept is residence-time.

Essentially, one computes the amount of time the

fluid has been in (or in residence within) the domain.
Residence-time zero is defined as the time when the

simulation starts. Most of the fluid within a separa-

tion region stays within that region for a considerable

amount of time. Thus, a common feature of sepa-
ration region is that the residence-time of the fluid

2OF9

within it is much larger than that of the surrounding

fluid. An iso-surface can then be used to distinguish
this region. The value of the iso-surface can be selected

knowing the characteristic time for the system. There-

fore, residence-time can easily produce the separation
surface for either steady-state or transient simulations.

This can be thought of as a streakline process where,
periodically at the in-flow, particles are seeded and
marked with their start-time. At some later time the

particles with the current time subtracted from the

start-time are segregated. The advantage of residence-

time is that you get complete grid coverage and the
surface generation is trivial.

The visualization test-bed used in this paper is
pV3,r, s a distributed system developed at MIT. pV3

is ideal for this work, in that, it is designed for co-

processing. Co-processing allows the investigator to
visualize the data as it is being computed by the solver.

Distributed computing decomposes the computational

domain into 2 or more sub-domains, which can be pro-

cessed across a network of workstation(s) and other

types of compute servers. The algorithm used in com-
puting residence-time has been developed to co-exist

with the parallel capability of pV3.

Theory

The residence-time of a volume of inviscid fluid is

defined by

DT
D-_-= 1 (1)

where T denotes residence-time. This is similar to

conservation of mass, but with a source term. It should

be noted that this author has not seen any references

to this definition in the open literature.
Since D oB'I = _ + if" V, then Equation (1) becomes

aT
0---t+ 3. VT = 1 (2)

where ff is the velocity vector.
Since the time when the residence-time calculation

starts is defined as time zero, then initial the condition
is

T(z, y, z) = o. (3)

At in-flow boundaries, new fluid is entering. By def-

inition, this fluid has zero residence-time. Therefore,
the boundary condition is

T(x, y, z) = 0 at in -/low. (4)

To obtain the conservative form of Equation (2) for

incompressible flows, this can be rewritten as

OT
O--_+ _. VT+ 7-V- zZ= I+TV.ff

aT
0--i- + v. (T_) = 1 + TV. 3.

And since V. z7 = 0 for incompressible flows, then

8T
0---_-+ V. (T_7) = 1. (5)

Equation (5) reflects the residence-time in an anal-

ogous manner to streaklines. Here the result is only a

function of the velocity field. Additional realism may

be applied to the formulation. The conservative form

for compressible flows can be obtained by rewriting

Equation (2) as

0T
p-_ + pff . V T = p

where p denotes density. And since the conservation

of mass equation for compressible flows is

Op
0-7 + v . (_) = o

then

o-_-+o_.v'r+7 N+v.(_) =p

O(pT)
0---7-+ v. (pT_ = p. (6)

The effect of viscosity on T is the same as its effect

on velocity in that the same mechanism is at work.
This is justified from the statistical mechanics view-

point. At the molecular level, viscous action mixes

individual molecules (each with it's own residence-

time), so the average local residence-time is effected
by viscosity. 9 The viscous term for Equation (6) mim-
ics the viscous term in the conservation of momentum

equation of the Navier-Stokes equations. Thus, the

residence-time equation for a viscous compressible flow
is

O(pT)
O-----t--+ V . (pTff) = p + V . (I_VT)

or

O(pT) + _ . (pTff - #VT) = p (7)
Ot

where p is the total viscosity, which accounts for both

laminar and turbulent components.

For the special case where the flow has both a con-

stant viscosity and density, Equation (7) reduces to

3T
0--t"+ V- (Tu_ = 1 + _V_T

OT
c9-t-+ V. (T_7 - _V7") = 1 (8)

where t¢ = _ which is a constant.
All the conservative forms of the residence-time

equations [Equations (5), (6), (7), and (8)] can be ex-
pressed as

OU OF OG OH

0--'T+ _-x + Oyy + _ = Q (9)

3or9

For incompressible inviscid flow

U = T, F = Tu, G = Tv, H = Tw, Q = 1,

where u, v, and w are the components of ft. For com-

pressible inviscid flow

U = pT, F= pTu, G = pTv,

H= pYw, Q= p,

for compressible viscous flow

OT
U=pT, F= pTu-#_x,

OT
H= pTw-p_z, O=p,

and for a flow with constant viscosity and density

U= T,

OT
G = pTv - P'-z-,

oy

Residence-time Integration

The clear disadvantage of using residence-time to ex-

tract regions of recirculation is that a Partial Differen-

tial Equation (PDE) needs to be solved. Equation (9)
has a form similar to the conservative formulation of

the Euler equations. This similarity enables the use of

integration schemes developed for either the Euler or

Navier-Stokes equations. It should also be noted that

the coupling is looser than turbulence models. T is

a function of ff and optionally p and p but does not
feedback to the Euler or Navier-Stokes equations.

Ideally the solver writer would include another en-

try (7") to the state vector. The time-step requirement

for residence-time is less restrictive than either the Eq-

ler or Navier-Stokes equations because of the lack of

acoustic waves so time-marching would not be effected.
In the case where modifying the solver can not be

considered (and in pure post-processing applications)

a residence-time solver is required. The scheme dis-

cussed in the rest of this paper is explicit, operates
on a cell-by-cell manner, and can therefore take ad-

vantage of pV3's parallel capability. Coupling to any
implicit solver would require more care do to the time-

step restrictions.

In producing a tool for general use it is important to

consider the design goals. In the case of selecting an

integration scheme for solving the residence-time PDE

the following must be considered:

• Spatial Accuracy. The spatial accuracy must be

at least as good as the solver.

• Temporal Accuracy. The temporal accuracy
should be consistent with the solver and be at

least second order accurate so it can be used in

unsteady simulations.

OT OT

F= Tu- _Tx , G = Tv- _--,Oy
07-

H= Tw - _-_z , 0=1.

• Numerical Dissipation. The dissipation produced

by the scheme must be a minimum so that the

sharp gradients in residence-time generated at the

separation surfaces are not smeared.

• Node Based. The function of iso-surfacing is done

where the value is at nodes that support the cells
of the mesh. The scheme selected must be able to

accurately place T at the nodes and with minimal

averaging.

• Support General Discretizations. pV3 supports
structured blocks, disjoint tetrahedra, pyramids,

prisms and hexahedra as either a homogenous

or heterogeneous collection. The scheme selected
should be able to deal with general meshing.

Lax-Wendroff

The explicit time-marching algorithm of the Lax-

Wendroff type is a good choice to solve Equation (9).
The Lax-Wendroff scheme is both second order in

space and time. Little numerical dissipation is gener-

ated by the method and only small amounts of numeri-
cal smoothing are required under favorable conditions.
The result is node based and the scheme can be cast

for the general discretizations supported by pV3.

The integrator developed is similar to that used by
Saxer 1° to solve the Euler equations for turbomachin-

ery stator/rotor flow. The basic integration scheme
was introduced by Ni, ll recast by Hall, 1_ and then

extended by Ni and Bogoian 13 to 3-D. Saxer l° then

adapted the formulation to handle hexahedral unstruc-

tured grids. For this tool the complete suite of cell
types are supported. Structured blocks are treated as

a collection of disjoint hexahedra.

In solving the residence-time equation, it is assumed

that the flow variables tT, and optionally p, and p are

known at all the nodes. The algorithm then computes
the flux across each cell face by averaging the fluxes F,

G, and H at the appropriate nodes. The flux residual

is computed by adding the fluxes through the faces of
the element, and then adding the source term for the
cell. This residual is then distributed back to the nodes

according to the Lax-Wendroff algorithm to evaluate

the change to the residence-time.
In a Lax-Wendroff scheme there are 3 components;

the first and second order terms as well as the source

term. The major part of the first order term is cell
based. For cell A:

At Celia

faces

The bar over F, G, and H denotes an average over

the nodes associated with the cell face. Sz, S_, and Sz

are the projected areas on the yz, xz, and xy planes

for the specific face. VA is the volume of the cell and

At is the time-step.

The second order term is node based and requires
the dual of the mesh. The contribution is based upon

what proportion of the intersection of the cell of in-

terest and the pseudo-mesh cell centered on node i.

Specifically the second order and source terms are:

dual

AUiA = -

Where S=, Sy and ,._z are the projected areas on the yz,
xz, and xy planes for the faces of the pseudo-mesh cell

contained in cell A. For inviscid incompressible flow:

AF = _AT+7"Au

AG = _AT+TAv

AH = t_AT+ZfAw

AQ = 0

for inviscid compressible flow

AH = t_A(pT") + (pT")Aw

AQ =

for inviscid compressible flow

AF = fiA(pT") + (p---'_Au - pA dTdx dT._xAp

dT dT

= A(pT) + (pT-)Av-

dT dT ApAH = eA(/F) + (pT")Aw- dz
AQ = Ap

and, for flow with constant density and viscosity

AF = fiA(pT") + (pT")Au - _A d---T
dx

Ac = dT
dy

AH = _A(pT") + (p7")Aw- _A dT

AQ = O.

Except for quantities defined above, the subscript

A denotes quantities evaluated at cell A, while the

subscript i stands for average quantities at node i.

Quantities marked with the overbar are averages over

the cell. Other quantities designated with the A op-

erator are the change in that quantity with respect to
time.

Finally, the complete contribution for node i in cell

A is computed by:

= g ±UA + AU,A . (lo)

4OF9

The contributions to node i (from all cells that touch

the node) are computed. The sum of these contribu-
tions define the change at node i:

cells

_Ui = _ 6Uis.
J=l

Boundary conditions

Three types of boundary conditions must be con-

sidered: inlet, outlet, and wall. At the inlet, or the

in-flow boundary, new fluid enters the computational

domain. By definition, the residence-time of this fluid
is zero. Therefore, the condition at the inflow bound-

ary for any node i at the inflow is:

U_=0.

At outlet boundaries, the simplest boundary condi-

tion has been used, which is to do nothing - extrap-

olate. This assumption is reasonable as long as the

gradients of the flow quantities in the direction normal

to the boundary are small. However, if the user deter-

mines a more elaborate boundary treatment would be

more appropriate, a call-back can be supplied which
overrides the standard method. The values of U and

_Ui of all the nodes will be passed to this subroutine,

and the necessary modifications/adjustments (be it for

the outlet boundary nodes or any other regions of the

flow) can made.
At a wall boundary with non-zero velocity, the

scheme must ensure that there is no flux through the

wall. A ftux through the wall would either create or de-

stroy residence-time producing a non-physical result.

The wall condition is accomplished by making a
correction to the contribution of nodes that touch

the wall. The correction is performed after the Lax-

Wendroff changes JU have been applied. The contri-

bution of cell A (where A touches the wall) to JUiA is
corrected as follows:

_UiA "l- _1_At (f'Sx + GS u + fISz) face=wall

Numerical smoothing

As stated above, Lax-Wendroff was selected, in that,

under some conditions little numerical dissipation is

required. A fourth-difference smoothing operator is

required to damp out saw-tooth oscillations emitted

by the scheme in the presence of strong gradients in

(such as at shocks). But, a fourth-difference smoother

alone is insufficient. In fact, it will worsen the stability

of the solution. This has to do with the dispersive

characteristics of Lax-Wendroff under large gradients.

The integration scheme kicks-up oscillations on both

sides of a discontinuity. This causes negative values

of residence-time on one side of the discontinuity and

values of T larger than the current simulation on the
other.

To make matters worse, strong discontinuities are
found at the bounds of any recirculation region. Inside

the region, the values of T would continue to get larger

and larger where outside the region the values remain

constant (for steady-state flow).
Therefore, a mix of second-difference and fourth-

difference smoothing is used. This mix is switched

so that under high gradients only the second order

smoother is applied and under quiescent conditions

only the fourth-difference smoothing is used. The
switch used is simply

_-'_edge-nodes (Vk -- Vi)

f"-J- £.._k_'_edge-n°des 0"1 IUk- Ud + aoIUkl

where S_ is the switch value for node i. This value

must be bounded on the high side at 1.0. a0 and al
are coefficients that are currently set to 0.05 and 1.0

respectively.
The fourth-difference smoothing operator, identical

to the one used by Saxer, 1° has been constructed for

general discretizations. The smoothing term is added

to the right-hand-side of Equation (10) and has the
form

-0.,v. (t2v u))
where 0.4 is the fourth-difference smoothing coefficient

and _ is a length comparable to the local grid size. In

discrete form, the smoothing operator becomes

1 cells

J

where Vs is the volume of the cell. D_ is a pseudo-

Laplacian based on the all of the edge nodes surround-

ing node i. It is defined by Holmes and Connel114 as

edge-nodes

Z
k

and, b_ is the discrete representation of a cell-
averaged pseudo-Laplacian

nodes
1

k

where _2k is a grid-dependent weight which determines

the degree of dependence on the neighboring nodes.

For details on how these weights are obtained, refer to

Saxer) ° In general, 0"4 is a coefficient given a value of
between 0.0001 and 0.005.

The smoothing operator finally becomes

_-_cellsls o= v: - u,)
x"_cells V-0.4(1 - Si)_ Z..,j s (/3_ - D_)

where a2 is the second-difference smoothing coefficient

given a value of between 0.001 and 0.01.

50F9

The Programming Interface

The residence-time and the pV3 programming in-

terfaces are similar in form and in coupling with the

solver. Both require a call to an initialization routine
that defines the spatial problem and sets constants.

Also, a call is required at the end of the iterative loop

(when all of the flow variables have been updated -

new values for _, p and p have been computed). These

are the only calls added to the solver and they have

the prefix naming convention "RT_". This minimizes

the changes to the solver and allows for easy removal

during debugging.

The solver data is communicated through call-backs.

These user-supplied routines are invoked by the "RT_"

calls and their responsibility is to have the appropriate

data arrays filled. The call-back routines are differen-

tiated in that they do not contain the '2 after the
"RT".

Tool-kit Calls

• RT_Init(type, sm2, sm4, kappa, nNode,

nCell, nInNode, nWallCell)

This routine must be called before any other

residence-time functions. It specifies the size and

type of problem. When mixing with pV3, the

call should be placed before the pV_Init call.

- int type is 0 to 3 for inviscid incompress-

ible, viscous compressible, constant viscosity
and density and inviscid compressible, re-

spectively.

-float sin2 - second-difference smoothing
coefficient (0"2).

- float sm4 - fourth-difference smoothing co-

efficient (a4).

- float kappa - _, required for type = 2
only.

- lnt nNode - number of nodes in the volume.

- int nCell - number of cells in the volume.

- int nInNode - number of in-flow nodes.

--int nWallCell - number ofwall faces.

• RT_Update (time)

This routine must be placed before the call to

pV_Update when mixing with pV3.

- float time - the current simulation time.

• RT_getResTime (tau)
This call retrieves the current value of T for all

nodes. This can be placed in the scalar field pV3

call-back, pVScal, to fill the residence-time scalar
for visualization.

- float tau[] - the current values of

residence-time.

Tool-kit Call-backs

• RTgetGrid(xyz, iCell, tCell)

This routine is always required.

volume discretization.

It defines the

float xyz[nNode] [3] - the node coordi-
nates.

int iCell [nCell] [8] - the ceil definitions.

int tCell [nCell] - the cell type:

1 = tetrahedron (4 nodes indices in iCell)

2 = pyramid (5 nodes indices in ice11)

3 = prism (6 nodes indices in iCell)

4 = hexahedron (8 nodes indices in ±Cell)

• RTinNodes (inNode)

This routineisalways required.It definesthe in-

flow nodes.

-- int inNode [nInNode] - the node indices for

the inlet.

• RTwallCelle (wallCell)

RTwallCells definesallwall facetsand the asso-

ciated3D cell.

- int wallCell[nWallCell] [2] - the first

entry definesthe cellindex and the second
definesthe faceindex.

• RTlocalVel (vel)

This routine is always required. It defines ff for
the entire volume.

- float vel [nNode] [3] - Node based veloci-
ties.

• RTgetPJao (rho)

This routine is required for inviscid and vsicous

compressible cases (type = 1 and 3). This re-
turns p for the entire volume.

- float rho[nNode] - Node based densities.

• RTgetMu (mu)

This routine is required for the vsicous compress-

ible case (type = 1) only. This returns p for the
entire volume.

- float mu[nNode] - Node based viscosity.

• RTmodify(dU, U)

This routine, if supplied, allows the modification

of either 6U_ and/or Ui directly. This is required

for special boundary conditions, such as moving

interfaces, periodics or internal boundaries due to

domain decomposition.

- float dU[nNode] - Node based 6Us.

- float U[nNode] - Node based Us.

6OF9

Validation and Examples

Axi-symmetric flow

The residence-time algorithm is first tested on flow

through a converging-diverging duct. This case is se-
lected because of the unusual nature of the solver. This

axi-symmetric (with swirl) system was developed by

Darmofa115 and computes the streamfunction as part

of the state-vector. This allows the simple calcula-

tion of the zero streamfunction or separation surface.

All residence time calculations are done in full 3D by

spinning the 2D geometry and producing 16 azimuthal

sections. The cells are all hexahedra except those at

the centerline that are represented as prisms. The

following examples were computed with a Reynolds
number of 200 and a swirl ratio of 1.75. The duct

walls are treated with a slip condition. The solver

was run in a transient mode but the input conditions
produce a stable flow. Residence-time is calculated

for both inviscid incompressible and constant viscos-

ity and density cases.

Figure 1 displays the duct and a rake of streamines

generated from the upsteam region. It is clear that

something interesting is occuring at the converging
part of the pipe.

When seeding streamlines from within that region,

it can be seen that there is a part of the flow field

that traps the paths. The steamline module in pV3

stops the integration after a fixed number of integra-

tion points to avoid endless compute. Two streamlines
are seeded and depicted in Figure 2.

The separation bubble is fully displayed just down-

stream of the converging section as shown in Figure 3.
This is an iso-surface of the streamfunction with value

0.

The characteristic time for this problem is about 24.

This is found by looking at an iso-surface of residence-

time and finding the time where the major portion of

the flow exits the domain. A value greater than that
needs to be selected to differentiate old fluid from the

core flow. Figure 4 displays an iso-surface of residence-

time at the value of 42 when running using the inviscid

incompressible formulation.
The tail seen behind the bubble is due to the fact

that the flow behind this object is slow. An axi-

symmetric comparsion of contours can be seen in
Figure5.

Figure 6 shows the residence-time iso-surface for the

constant viscosity and density case. It should be noted

that the tail trailing the bubble is larger indicating the

the greater mixing due to the viscous mixing.

Conclusions

The residence-time equations for different types of

flow conditions (inviscid incompressible, viscous in-

compressible, inviscid compressible, and constant den-

sity/viscosity) have been formulated. An explicit time-

marching algorithm of Lax-Wendroff type is used to

solve the equations either coupled to a solver or in

a post-processing mode. This explicit algorithm per-

forms the computation on a cell-by-cell/node-by-node

manner, and thus can be used within the context

of pV3's distributed processing. In order to handle

the variety of possible boundary-condition treatments,

provisions are made to allow the programmer to supply

a subroutine where some integration variables can be

modified before the residence-time values are updated.

This procedure is inefficient for steady-state post-

processing and can not be used for co-processing if the

solver formulation is implicit. An accelerated solving

procedure is required that can assist in these setting.

This procedure must be immune to the fact that there

will likely be flow reversal with in the domain of inter-
est.

Acknowledgments

David Sujudi performed much of the initial work on
this technique when he was a student at MIT. Mike

Giles of Oxford suggested its path. Dave Darmofal was

helpful in fixing the numerical smoothing and keeping
me honest.

This work was partially sponsored by NAS at NASA
Ames Research Center with David Kao as the Techni-

cal Monitor and by Army Research Labs with Stephen
Davis as the Technical Monitor. Additional support

came from the IBM SUR Project and the IBM UUP

Project.

7OF9

Fig. 1 The geometry with a rake of 10 streamlines seeded from an up-stream position

Fig. 2 2 streamlines seeded from within the recirculation region

Fig. 3

References

_J. Helman and L. Hesselink. Analysis and Representation of

Complex Structures in Separated Flows. SPIE Proceedings, Vol

1459, 1991.

2J. Helman and L. Hesselink. Visualizing Vector Field Topol-

ogy in Fluid Flows. IEEE Computer Graphics and Applications,

May 1991.

3David Sujudi. Distributed Visualization and Feature Identi-

fication for 3D Steady and Transient Flow Fields. MIT Thesis,
1996.

4D. Sujudi and R. Haimes. Identification of Swirling Flow in

3-D Vector Fields. AIAA Paper 95-1715, 1995.

5D. Kenwright. Automatic Detection of Open and Closed

Seperation and Attachment Lines. Proceedings of IEEE Visual-

ization '98, 1998.

6D. Kenwright and R. Haimes Vortex Indetification - Ap-

plications in Aerodynamics. Proceedings of IEEE Visualization

'97, 1997.

7R. Haimes. pV3: A Distributed System for Large-Scale Un-

steady Visualization. AIAA Paper 94-0321, 1994.

SR. Haimes and D. Edwards. Visualization in a Parallel Pro-

cessing Environment. AIAA Paper 97-0348, 1997.

Streamfunctlon zero from the solver

9M. B. Giles, personal communication.

l°A. Saxer. A Numerical Analysis of 3-D Inviscid Sta-

tor/Rotor Interactions Using Non-Reflecting Boundary Condi-

tions. MIT Thesis, 1992.

11R.-H. Ni. A Multiple Grid Scheme for Solving the Euler

Equations. AIAA Journal, Vol 20, pp. 1565-1571, 1981.

12M. G. Hall. Cell-Vertex Multigrid Schemes for Solution of

the Euler Equations. Technical Report 2029, Royal Aircraft Es-

tablishment, 1985.

13R.-H. Ni and J. BogoJan. Prediction of 3-D Multi-Stage

Turbine Flow Field Using a Multiple-Grid Euler Solver. AIAA

Paper 89-0203, 1989.

_4D. G. Holmes and S. Connell. Solution of the 2-D Navier-

Stokes Equations on Unstructured Adaptive Grids. AIAA Paper

89-1932, 1989.

15D. Darmofal. A Study of the Mechanisms of Axisymmetric

Vortex Breakdown. MIT Thesis, 1993.

8OF9

Fig. 4 Iso-surface of residence-time using the invicid formulation

Fig. 5 A comparison between streamfunction 0 and residence-time contours in an axi-symmetric cut

Fig. 6 Iso-surface of residence-time for the constant viscosity and density case

90F9

On the Velocity Gradient Tensor and Fluid
Feature Extraction

Robert Haimes*

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

haimes@orville.mit.edu

and

David Kenwright t

MRJ Technology Solutions
NASA Ames Research Center

davidk_nas.nasa,gov

In the analysis of the velocity gradient tensor the local flow characteristics can be
classified. By focusing on critical points one can build a global view of the flow topology.
For this 3x3 tensor an eigen-analysis produces 3 eigenvalues. Mapping these to the
complex plane produces the classification signature. Vector field topology can be used as
the foundation of automated fluid feature extraction.

This paper builds the foundation for using the velocity gradient tensor and discusses
how it has been (or could be) successfully used in finding fluid flow features.

Introduction

Fluid flow features such as vortices, separation, and
shocks are items of interest that can be found in the

results obtained from Computational Fluid Dynam-

ics (CFD) simulations. Most commercial visualiza-

tion systems provide users with a suite of general-

purpose tools (e.g., streamlines, iso-surfaces, and cut-

ting planes) with which to analyze their data sets. In
order to find important flow features, users must inter-

actively search their data using one or more of these

exploratory tools. Scientists and engineers that use

these tools on a regular basis have reported the fol-

lowing drawbacks:

• Exploration Time.

Interactive exploration of large-scale CFD data
sets is laborious and consumes hours or days of

the scientists/engineers time.

• Field Coverage.

Interactive techniques produce visualizations

based on a limited number of sample points in the

grid or solution fields. Important features may be

missed if the user does not exhaustively search the
data set.

• Non-specific.

Interactive techniques usually reveal the flow be-

havior in the neighborhood of a flow feature rather

than displaying the feature itself.

"Principal Research Engineer
tSenior Research Scientist

Copyright (_ 1999 by Robert H_ime. k David Kenwright. Published by

the American lnJtitute of Aeronautic. and Astronl_tic., Inc. with perml|.ion.

1OF7

Visual Clutter.

After generating only a small number of visual-
ization objects (e.g., streamlines, cutting planes,

or iso-surfaces) the display becomes cluttered and

makes visual interpretation difficult.

Flow visualization research is now concentrating on
feature extraction algorithms that automate the data

analysis and extract the salient features with little or

no human intervention. One of stumbling blocks has

been the lack of precise mathematical definitions for

flow structures such as vortex cores, separation lines,
recirculation bubbles, and shock surfaces.

Using local representations of the velocity vector

and velocity gradient fields, feature extraction tech-

niques have been developed that locate many of the

aforementioned features. These techniques, based on
concepts from critical point theory, utilize the property
that linear vector fields have a finite number of flog.

topologies. Feature extraction techniques have the fol-

lowing advantages over exploratory visualization tools:

Fully Automated.

The analysis can be done off-line in a batch com-

putation.

Local Analysis.

The computations for each cell are independent of

any other cell and may be performed in parallel.

Deterministic Algorithms.

There are no "parameters" that the users can ad-

just.

• DataReduction.
Theoutputgeometryisseveralordersof magni-

tude smaller than the input data set.

• Quantitative Information.
Precise locations for all the flow features can be

extracted.

This paper discusses how the velocity gradient ten-
sor has been used in the visualization of CFD results.

In particular, it describes the relationship between the

tensor and the topology of the flow field and describes

several automated feature extraction techniques based

on this relationship.

Calculating the Velocity Gradient

The analyses presented in this paper are three-

dimensional. In this context velocity is a vector with

3 components in Cartesian space

l_= ---- V

-_ w

Velocity can be obtained for every node in the dis-
cretized volume from the results of CFD simulations.

This vector field is commonly used in the visualiza-

tion phase of the analysis to generate streamlines or

streaklines in an attempt to assist the investigator in
understanding the topology of this vector field. The

gradient of the velocity field, _V, is rarely used for visu-

alization purposes, although it is central part of vector

field topology)
The velocity gradient contains the information on

how the velocity is changing in space. This 3 x 3 tensor
is defined as

Oy Oz
Ov

V= _o_w_o _ (1)

1__"is not usually a quantity that is directly output by

a CFD solver but can easily be derived from the vector

field and the supporting mesh. For example, a first-

order approximation to ff gives rise to the following

linear interpolation function:

v = c2 + _ 0--_ _7 Y

Ow Ow _ Zw c3 -_ -_

(2)

A tetrahedron has exactly the correct amount of

information to compute 1/_ and the coefficient vector

(cl,c_,c3) T. This means that a unique (and constant

over the entire element) V can be constructed. Ele-

ments with more nodes (e.g. pyramids, prisms, hexa-

hedra, and etc.) have a changing _V based on the cell's

interpolant. For all grid types, elements can be broken

up into tetrahedra, V calculated and then distributed
back to the nodes in a finite element manner.

It should be noted that _V is not dimensionless. It
has the units of time -1. Therefore most all data de-

rived directly from the velocity gradient tensor has the
form of a rate.

Velocity Gradient Decomposition

A common technique used to better understand the

local flow is to decompose V to its symmetric and anti-

symmetric parts:

1 (V + Y r) (3)

I(v__vT)=I[0--_0" WU]9.=5 0 -coz (4)
--COy O)z 0

Where S is a measure of the strain which contains both

bulk and shear components. __ contains the rotational

part of the flow. As can be seen in Equation (4) there
are only 3 components of this tensor. Vorticity is more

commonly viewed as a vector:

[] lOW=
coz

The trace of S, which equals the trace of V, reflects

the divergence of the field:

Ou Ov Ow

v. = + N + o--i- (6)

This decomposition has been used by a number CFD

visualization researchers, notably:

• Darmofal and Haimes 1. During the integration
of streamlines both V-t7 and _ are tracked.

The streamlines optionally are plotted as ribbons,

where one edge is the actual streamline and the
other rotates to reflect the curl. The streamline

could be plotted as a tube centered on the stream-
line where the thickness of the tube relates to the

local divergence. This is similar to the Stream

Polygon. 2 Also, an option would draw a spiral

pattern on the tube to display the direction (the

tube itself), the divergence (the tube cross-section

size) and the vorticity (the spiral pattern).

• deLeeuw and vanWijk 3. Here an interactive probe

is constructed that points in the local direction

of the flow and has the ability to concurrently
display curvature, V. if, _, acceleration and shear

in a physically meaningful manner.

These techniques are interactive and attempt to lo-

cally display components of L'-

2OF 7

Irnag(A_)

spiraling in

decel.

spiraling in

spiraling out

accel.

spiraling out

Real(A/)

Fig. 1

Critical Point Theory

Critical points of a vector field are those points

where the magnitude of the velocity vanishes. Stated

in another way, these points are defined where the

streamline slope is indeterminate and the velocity is
zero relative to an observer. 4 From this definition it is

clear that the process of locating critical points is not
Galilean invariant.

From a topological point of view critical points in

the field mark changes. An eigen-analysis is used on

the velocity gradient tensor at critical points to classify

the local topology. For V, the eigenvalues (A1,2,3),
are the fundamental quantities which determine the

qualitative features of the flow pattern. In general,

various possible flow patterns and the corresponding

eigenvalue-based flow classifications are summarized in

Figure 1. It should be noted that when 3 eigenvalues
exist, there are two general types: 3 real eigenvalues

or 1 real (A_) and a complex conjugate pair (At).

Any real eigenvalue sits on the real axis of Figure I.

The sign of the eigenvalue indicates whether the flow

is accelerating (positive) or decelerating (negative).
The magnitude of the value reflects the strength. The

complete suite of critical point classification for 3 real

eigenvalues from eig(V) can be seen in Figure 2. In

this Figure, each type is displayed by a cartoon of the

flow pattern approaching the critical point and a plot

of the As in the complex eigenvalue plane.

In Figure 2 the portrait is displayed as flow on a

2D plane and then arrows indicating a flow direction

orthogonal to that surface. The choice is somewhat

arbitrary. The plane is defined by the 2 of eigenvectors

(the ones plotted on the plane).

When there is a complex conjugate pair of eigen-

values, At acts as described above. The magnitude of

the imaginary part of Ac indicates the strength of the

spiraling flow. If the value is small (near the real axis)

the flow (in the plane) is hardly swirling. If the magni-

Flow classifications in eigenvalue plane, A1,2,3 = eig (__V).

tude is great then the flow is rotating rapidly abound

the point. The sign of the real part of Ac indicates

whether the flow is converging (negative) or diverging

(positive) from the point, with the magnitude of the

value again reflecting the strength of the attraction or
repulsion. The special case where the real part of Ac

is zero just produces concentric periodic paths.

The complete suite of critical point classification for

)_r and Ac can be seen in Figure 3. In this Figure,

each type is again displayed by a cartoon of the flow

pattern approaching the critical point on the complex
eigenvalue plane. The portrait is displayed as flow on

a 2D plane and then arrows indicating a flow direction

orthogonal to that plane (this direction is defined by

the eigenvector associated with At). In these cases,

the plane always depicts the spiraling flow. The plane
is defined by the 2 eigenvectors associated with Ac.

Critical Points and general eigen-analysis of V has
been used by a number CFD visualization researchers,
these include:

Globus, Levit and Lasinski 5. This paper intro-

duced the vector field topology module to FAST. 6

In this work, critical points were located and

marked with glyphs. The shape of these icons

reflected the critical point classification. One

could use this module to interactively mark vortex

cores. This was drawn by selecting glyphs that in-

dicate spiraling flow and integrating a streamline

in the direction of the eigenvector associated with

)_r. This was an important step in the right di-

rection for feature extraction. Unfortunately, this
module of FAST was not frequently used because:

- A knowledge of Critical Point Theory. With-

out the knowledge and understanding of the
concepts, looking at these icons told the in-

vestigator little.

3OF7

Repelling Node

Saddle - Index 2

I-

" Saddle - Index 1Ioft t

I -
_ Attracting Node

\

\
Fig. 2 Critical point portrait and eigenvaiue plane
for non-spirai flow

-Results were difficult to interpret. Even

with the knowledge, one needs a good spatial

imagination to connect the dots.

- Complex Flows suffered from clutter. With

an interesting (and therefore complex) flow
topology the number of Critical Points may

approach 100. It is not clear what one can

do with this many (sometimes overlapping)

gl_/phs.

• Delmarcelle and Hesselink v. The concept of a Hy-

perstreamline is introduced. This concept uses

tensor field lines as the direction of the Hyper-
streamline and the cross-section is defined from

the eigen-analysis. This technique also suffers

Repelling Node

/

J

Saddle - Index 2

/

D

Saddle - Index 1

/

• D

Fig. 3 Critical point portrait and eigenvalue plane
for spiral flow

Attracting Node

/

from difficult to interpret graphics.

Fluid Feature Extraction

Visualization is the final phase of the suite for tra-

ditional CFD analysis. In this step, the investigator

attempts to understand the results by visually probing

the data. These tools (cuts, iso-surfaces, streamlines

and others) only hint at the real answers. Usually,

much interaction is required to get a fulI understanding

of the flow field, in particular where the flow topology
is complex.

Feature extraction is the next important step in vi-

sualization. The results can be used interactively to

point directly to areas of interest. As analysis suites

40F7

become more integrated, feature extraction can be
used directly to enhance the fidelity of the solution

by grid adaptation in the appropriate regions. During
parametric studies, the classification of features found

in the simulation can be quickly scanned to find tran-

sitions in topology.

The discussion below will review the important fluid

flow features and how the velocity gradient tensor ei-

ther contains the ability to extract the feature or is
otherwise affected.

Shocks

Normal shocks express themselves as abrupt changes

in the magnitude of the velocity field. This can be

seen in the eigenvalues of V as at least one strong neg-

ative real A. This is not sufficient for constructing a
shock finder because one can not easily differentiate

a strong compression wave from a shock. See Lovely
and Haimes 8 for a complete description on shock ex-
traction.

Vortex Cores

Vortices can be automatically detected by using V

throughout the mesh looking for situations of swirling
flow. All mesh elements are broken into tetrahedra

(if not already this type of element). The unique V

is constructed and then classified. If swirling, the di-

rection orthogonal to the spiral plane (the eigenvector
associated with At) is used as the axis of swirl. This di-
rection is subtracted from the nodal velocities. These

reduced velocities are used to see if any faces display a

zero. If so, that location on the face is marked. With

two (or more) marks on the tetrahedron's face, it is
determined that the core center-line has pierced the

cell. These lines are collected and drawn to display

the core segments.

This particular algorithm is fully described in Sujudi
and Haimes 9 and contains no constants and requires no

user intervention. The core finder has been applied to

a fairly complete suite of applications, see Kenwright
and Haimes3 °

The strength of the vortex is best described by If_l.

This technique, although satisfying, is not without

problems. These are:

• Not producing contiguous lines.

The method, by its nature, does not produce a
contiguous line for the vortex core. This is due

to two reasons; (1) for element types that are not
tetrahedra the interpolant that describes point lo-
cation within the cell is not linear. This means

that if the core passes through these elements
the line can display curvature. By subdividing

pyramids, prisms, hexahedra and higher-order el-

ements into tetrahedra for this operation produces

a piecewise linear approximation of that curve.

And (2) there is no guarantee that the line seg-

ments will meet up at shared faces between tetra-

hedra. This is because the eigenvector associated

with the real eigenvalue will not be exactly the

same in both neighbors, so when this vector is sub-
tracted from the vector values at the shared nodes

each tetrahedra sees a differing velocity field for
the face.

• Locating flow features that are not vortices.

This method finds patterns of swirling flow (of

which a vortex core is the prime example). There

are other situations where swirling flow is de-
tected, specifically in the formation of boundary

layers. Most implementations of this technique

do no process cells that touch solid boundaries

to avoid producing line segments in these regions.
But this does not always solve the problem. In

some cases (where the boundary layer is large in

comparison to the mesh spacing) this boundary

layer generation is still found.

• Sensitive to other non-local vector features.

Critical point theory gives one classification for

the flow based on the local flow quantities. 3D

points can display a limited number of flow

topologies including swirling flow, expansion and

compression (with either acceleration or decelera-
tion). The flow outside this local view may be

more complex and have aspects of all of these

components. The local classification will depend

on the strongest type. Also if there are two

(strong) axes of swirl, the scheme will indicate a
rotation that is a combination of these rotation

vectors based on the relative strength of each.

This has been reported by Roth and Peikert n

where the overall vortex core strength was not

much greater that the global curvature of the flow.
The result was that the reported core location was

displaced from the actual vortex.

The first point can be addressed by re-casting the al-
gorithm to be face-based instead of cell-based. Enforc-

ing the cell piercing to match at cell faces insures that

the line segments generated will produce a contiguous

core. This can be done via the following modification

to the algorithm:

1. Compute the V at each node.

This requires much more storage - 9 words are
needed for each node in the flow field. This has the

advantage that the stencil used for the operation

is larger than the cell and therefore the result will

be generally smoother.

2. Average the node tensors (on the face) to produce
a face-based V.

This insures that the same tensor is produced for

the two cells touching the face.

3. Perform the eigen-analysis on the face tensor.

If the system signifies swirling flow, determine if

5OF7

the swirling axis cuts through the face by looking
at the reduced velocity. If, so mark the location
on the face.

This is not a good result in terms of CPU cycles, in

particular for structured blocks, where each individual

hexahedron is broken up into 6 tetrahedra (5, the min-

imum does not promote face matching). This means
that for each element in the mesh a minimum of 12

eigen-analyses are required.

This performance problem suggest another, related,

technique:

1. Compute the velocity gradient tensor at each
node.

2. Perform the eigen-analysis on the node tensor.
The tensor can be overwritten with the critical

point classification and the swirl axis vector for

rotating flow.

3. Average the swirl axis vectors for the nodes that

support the tetrahedral face.

This should only be done if all nodes on the face

indicate swirling flow. Some care needs to be
taken to insure that the sense of the vectors are

the same. Determine if the swirling axis cuts

through the face, and if so, mark the location on
the face.

For tetrahedral meshes, the reduction of compute
load is by a factor of 5 to 6 over the original method

(there are roughly 5.5 tetrahedra per node in 'good'

unstructured grids). For structured blocks, where the

number of nodes is about equal to the number of hex-
ahedra, the eigen-analyses count is on the order of one

per cell.

Separation and Attachment

Helman and Hesselink 12,13 have developed a visual-

ization scheme for generating separation surfaces using

only the vector field. The scheme starts by finding the

critical points on the surface of the object. Streamlines

are integrated along the principal directions of certain
classes of critical points and then linked to the critical

points to produce a 2-D skeleton of the flow topology

near the object. Streamlines are integrated out to the

external flow starting from points along certain curves
in the skeleton. These streamlines are then tessellated

to generate the separation surfaces.

Kenwright 14 developed a local technique for ex-

tracting separation and attachment lines based eigen-

analysis of the velocity gradient tensor. This local

scheme detects two types of separation; open and

closed. Closed separation lines originate and termi-
nate at Critical Points, i.e., the type found by Helman

and Hesselink's algorithm. Open separation lines do

not need to start or end at critical points and cannot

be detected by vector field topology methods. Ken-
wright's technique applies critical point theory to the

surface flow on triangular elements near a body. The

three velocity vectors at the vertices of each triangle
are used to construct a 2 dimensional linear vector

field with a constant velocity gradient tensor. Ten-

sots with two real eigenvalues produce flow patterns

that contain separation and attachment lines. For lin-

ear vector fields, these lines are straight, parallel to

the eigenvectors, and pass through the Critical Point.

If one of these lines happens to cross its associated

triangle, the line segment bounded by the triangle is

collected for rendering. By repeating this process in

every triangle, the independent line segments combine

to form larger separation or attachment lines.

Boundary Layers _ Wakes

There has been little success in the ability to auto-

matically locate boundary layers from the output of

CFD solvers. In fact, many algebraic and one equa-

tion turbulence models need to know the edge of the

boundary layer. In most all cases vorticity is used as
the marker. This has been determined to be inade-

quate.
Boundary layers (and wakes) display two features;

(I) the generation of vorticity and (2) the fluid is under

shear stress. This suggests a marker that is a function
of both _ and shear.

from Equation (3) can be used to compute the
rate of shear stress. This stress tensor contains both

the bulk and shear stresses and is dependent on the

coordinate system. To extract a single scalar that is

coordinate system invariant and has the bulk terms re-

moved it is necessary to diagonalize this tensor (again

another eigen-analysis). The result is always 3 real
eigenvalues (S_ is symmetric positive definite). These

eigenvalues (/,a, A,2, 1,3) produce a vector which sig-

nifies the 'principle axis of deformation'. By employing

techniques from Solid Mechanics, the norm of the see-
ond principal invariant of the 'stress deviator' can be
used as a measure of the shear. This is

/(_81 --)_$2) 2 "+" (_sl -- _s3) 2 "{- (_$2 -- _$3) 2 (7)
6

The boundary layer equations are essentially 2D.

Using only the 2 strongest eigenvalues empirically

gives better results. Therefore Equation (7) reduces
to

_82 - ,L2. (8)

A scalar field can be constructed from a function of

I_l and the value from Equation (8). This node-based

field can be passed through an iso-surface algorithm.
This marks those areas that have a certain amount

of both rotation and shear stress. This empirical ap-

proach has shown good results in detecting boundary

layers and wakes but has the following drawbacks:

60F7

• A function of shear and rotation is ad hoc.

• The value is not non-dimensional, but has units

of inverse time.

This means that the iso-surface value used to de-

fine the edge of the layer changes from case to

case. This scalar needs to be multiplied by some

characteristic time associated with the problem.

• The value used for the iso-surface is not specified

via theory.

Conclusions

The ability to automatically detect flow features

from the results of CFD codes is closely tied to the

velocity gradient tensor V. Decomposition into the ro-

tational and irrotational parts allows examination of

some aspects of the local flow. Critical Point Theory

can also be used to map the eigenvalues of V onto the

complex plane thus providing a local classification of

the flow. These aspects can be used to attempt to au-

tomatically detect fluid flow features by following the

local topology of the vector field to gain a global view

of the features.

Acknowledgments

This work was partially sponsored by NAS at NASA

Ames Research Center with David Kao as the Techni-

cal Monitor and by Army Research Labs with Stephen

Davis as the Technical Monitor. Additional support

came from the IBM SUR Project and the IBM UUP

Project.

References
1D. Darmofal and R. Haimes. Visualization of 3-D Vector

Fields: Variations on a Stream. AIAA Paper 92-0074, 1992.

2W. Schroeder, C. Volpe and W. Lorensen. The Stream
Polygon: a Technique for 3-D Vector Field Visualization. Pro-

ceedings of IEEE Visualization '91, 1991.

3W. deLeeuw and J. vanWijk. A Probe for Local Flow Field

Visualization. Proceedings of IEEE Visualization '93, 1993.

4M. Chong, A. Perry and B. Cantwell. A General Classifi-

cation of Three-Dimensional Flow Fields. Phys. Fluids A, vol.
2, pp. 765-777, 1990.

SA. Globus, C. Levit and T. Lasinski. A Tool for Visualizing

the Topology of Three-Dimensional Vector Fields. Proceedings
of IEEE Visualization '91, 1991.

SG. Bancroft, F. Merritt, T. Plessel, P. Kelalta, R. McCabe,

A. Globus. FAST: A Multi-Processing Environment for Visual-
ization of CFD. Proceedings of IEEE Visualization '90, 1990.

VT. Delmarcelle and L. HesseIink. Visualization of Second

Order Tensor Fields and Matrix Data. Proceedings of IEEE Vi-
sualization '92, 1992.

SD. Lovely and R. Halmes. Shock Detection from Compu-
tational Fluid Dynamics Results. AIAA Paper 99-????, 1999.

9D. Sujudi and R. Halmes. Identification of Swirling Flow
in 3-D Vector Fields. AIAA Paper 95-1715, 1995.

l°D. Kenwright and R. Haimes. Vortex Indentification - Ap-

plications in Aerodynamics. Proceedings of IEEE Visualization
'97, 1997.

11M. Roth and R. Peikert. Flow Visualization for Turboma-

chinery Design. Proceedings of IEEE Visualization '96, 1996.

12j. Helman and L. Hesselink. Analysis and Representation

of Complex Structures in Separated Flows. SPIE Proceedings,
Vol 1459, 1991.

lsj. Helman and L. Hesselink. Visualizing Vector Field

Topology in Fluid Flows. IEEE Computer Graphics and Ap-
plications, May 1991.

14D. Kenwright. Automatic Detection of Open and Closed

Seperation and Attachment Lines. Proceedings of IEEE Visual-
ization '98, 1998.

70F7

Shock Detection from Computational Fluid

Dynamics Results

David Lovely*

Massachussetts Institute of Technology, Cambridge, MA 02139

Robert Haimes t

Massachussetts Institute of Technology, Cambridge, MA 02139

In complex flow regimes, it may be difficult for an analyist to find the location of
shock discontinuities from within a Computational Fluid Dynamics (CFD) solution. They

do not correspond to locations where the roach number is unity, and the hlgh gradients
associated with the discontinuity can be difficult to detect because of numerical smoothing
performed in order to obtain the solution.

An algorithm is introduced that uses the physics of the CFD solution to locate shocks
in transient and steady state solutions. The test was validated with simple I and 2
dimensional models, then extend to more realistic 3 dimensional flows. A set of filtering
algorithms was developed to remove any false shock indications.

Results indicate that both the stationary and transient shock finding algorithms ac-
curately locate shocks, but need filtering to compensate for lack of sharp discontinuities
found in CFD solutions.

Nomenclature

P Pressure

p Density
a Speed of sound
U Speed
M Mach number

= _rM Ma_h vector
ratio of specific heats
Velocity

Introduction

Shock waves are compression waves in flow fields
that may occur when the velocity of the fluid exceeds
the local speed of sound. The state of the fluid as de-
scribed by the pressure, velocity and other primitive
variables can change radically across a shock boundary
of only a few molecular mean free paths wide. These
discontinuites are of interest to designers because their
strength and location affects drag on aircraft, the func-
tioning of inlets, the efficiency of nozzles and a host of
other design problems in fluid mechanics. When these
problems are simulated numerically with CFD codes,
the discontinuites often persist, but become harder to
detect because of the numerical properties of the solu-
tion. The problem is analogous to finding edges in an
image, the purpose of both applications is to find dis-
continuities in a scalar field that contain large spacial
changes in the scalar along with noise and smoothing.
In the case of CFD solutions, the noise in the solution

*Graduate Student

tPrincipal Research Engineer

is analgous to dispersion and the smoothing is related
to dissipation. Figure 1 shows the how the pressure
across the idealized pressure discontinuity at a shock
differs from an actual shock. Dissipation blurs the
edges of the shock, making it hard to determine it's
extent. Dispersion creates the high frequency noise on
the edges of the shock.

There are two approaches to detecting shock dis-
continuites. The first approach is to view it as an
edge detection problem and apply the methods that
have been developed in that field. Alternatively the
physics of shocks can be used to create a detection
algorithm that is not applicable to the more general
problem. This paper takes the physics approach since
there is not a generally agreed on 'best' edge detection
algorithm and by looking at the physics, it might be
possible to formulate a more rigerous detector.

In the past, shock waves have been extracted with
an edge detection technique which has been described
by Ms, Rosendale, and Vermeer. a This technique
searches for inflection points in the pressure or den-

sity fields by finding areas where the iaplacian of the
scalar quantity goes to zero. This works because scalar
quantities like pressure have their maximum rate of
increase at the shock and the second derivative of the

scalar goes to zero, as shown in the figure 1. How-
ever, this detector will pick up other features that are
not shocks. There can be expansion waves in a flow
solution that are similar to shock features, but pres-
sure and density decrease along streamlines through
the expansion. The second derivatives of pressure
and density are also zero in quiescent flow like re-
gions far from a body. Both these features have to
be removed from the marked areas. One advantage of

1 OF I0

this approach is that it also captures moving shocks
in a transient solution, since pressure and density are

invariant quantities, unchanged when the frame of ref-

erence is attached to a moving shock.

I :l:deal shockActual shock --

g

m
m
g

Shock r_g:[on

Location

Fig. 1 Shock inflection points

The second method is the one advocated in this pa-

per, which is to use the pressure gradient to find the
value of the mach number normal to a shock. The

approach was outlined by David Darmofal 3 and also
implemented in Plot3D. 5 Since the shock surface nor-

mal will be aligned with the pressure gradient vector,
the mach number in the direction of this vector is the

normal mach number. A shock is then located where

this normal mach number is greater than or equal to
one.

One disadvantage of this shock finding method is

that it will fail to capture some moving shocks in tran-
sient solutions. The mach vector is calculated in the
CFD solution relative to the model frame of reference.

But the shock calculation needs the roach vector in

the shock frame of reference. For example, a shock
traveling in a shock tube can exist when the fluid in

the tube is moving at a velocity less than the speed
of sound. Only when the mach number is calculated

with respect to the moving shock would this shock be

detected. Fortunately, correction terms can be added

to the basic equation to compensate for the change in

reference frame and make the detector valid for moving
shocks.

Shock Visualization

Shock waves in invicid flow have a thickness on the

order of a few molecular mean free paths, so they can
be visualized as surfaces in a three dimensional flow.

In moving to a three dimensional numerical model,
the previous work by Ma, Rosendale, and Vermeer _

has tried to preserve the surface representation. Sim-

ilar work by Pagendarm and Seiz 4 refers to shocks

as "invisible surfaces" that should be made visible by

computer rendering. But, becanse of the descritization

and numerical effects of modeling such sharp disconti-

nuities, the shock location is actually spread out into

a three dimensional region of space, not just a sur-

face. Even in areas of strong shocks and highly refined
grids, this region often looks like a slice of the model

volume, with two close and almost parallel surfaces

enclosing the shock. The boundaries of the region are

not guarenteed to enclose the entire discontinuity, but

it will lie within that region. Both Pagendarm and
Ma, Rosendale L4 try to resolve this problem by ap-

plying a threshold to the pressure or density gradient

magnitude to filter out one of the surfaces. Hesselink,

Levy, and Batra 6 take an alternative approach to filter-

ing. They reject all the triangles in the shock surface

that have normals that are not aligned with the pres-

sure gradient. However, filtering out one surface is

not always desirable since the thickness and shape of

the region conveys information about the model, the
solution, and how well the shock has been detected.

Elements marked in the shock region can also be used

in a mesh refinement procedure. The only way to col-
lapse the shock region into a surface is to replace the

computed variation of temperature density and ve-

locity in this region with a sharp step function that
does not violate the mass and momentum conservation

principles. However this is not practical since the de-

tected region does not correspond to the actual extent

of the shock, making the jump in density, temperature
and pressure across the shock is difficult to find. Even

though physical shocks can be thought of as surfaces,
shocks in numerical models are regions in space.

Stationary Shocks

The stationary shock algorithm was developed with

a knowledge of the shock geometry shown in figure 2.

];
y A

: ffiMIQV P

•_ = 1
!

\x,,N,\\\\\\\\\\\

Fig. 2 Shock detection test quantity

For any shock, the mach number normal to the

shock has a value of at least one just before the shock.

This normal mach number can be computed on each

node and used as a test value for determining the shock

location. The pressure gradient is always normal to the
shock, so it was used to find the shock orientation. The

pressure gradient was approximated for each node, and
then dotted with the mach vector to calculate a shock

test value at each node. The locations where the test

value equals one forms a boundary surrounding the
shock location.

2 OF I0

This test excludes areas of expansion, since the pres-

sure gradient and the mach vector will have opposite

senses, and their dot product will be less than zero.

For three dimensional models, an iso-surface of

Mn = 1 was used to visualize the results. The shock

feature is surrounded by the Mn = 1 iso-surface, and
has a thickness associated with it. In the two dimen-

sional case, contours of the normal mach number were

created, and the M_ = 1 curve forms a boundary for

a shock region.

Number of ele- Shock thickness (num
ments cells)

5272 3

13801 [3

20942 3

Table 1 Grid study results

und 9 are contour plots of the normal roach number,

starting at Mn =l in the region of the wedge.

Test Cases

Grid Study

The supersonic ramp test case had the geometry of

figure 3. The shaded area is the region of the model

that was used to plot the results and grids.

open

Fig. 3 Ramp model

Three different uniform grids were generated for the

same geometry to determine the sensitivity of the de- Fig. 7 Shock countours on the coarse grid
tector to grid size. Figures 4, 5, and 6 show the grids

that were used for the experiment.

[__

Fig. 5 fine grid model

Fig. 6 20000 element model

Fig. 8 Shock countours on more refined grid

The results in table 1 show that the shock algorithm

displays shock thickness as a linear function of element

size. The shape of the shock region not only locates

the shock, but can point to a lack of mesh refinement
in the area.

The numerical model used to solve the problem also

greatly effects the shape of the shocks. Some CFD

solution algorithms are better suited to capturing the
sharp discontinuities. The larger the effective dissipa-

tion, the more spread out the shock and the more cells
involved.

The results of the three runs were similar except for

the thickness of the indicated shock. The larger the el-
ement size, the larger the indicated shock. Figures 7, 8

3 OF 10

Fig. 9 Shock countours on highly refined grid

Transient Modifications

The assumptions made in constructing the previ-

ously described shock finding technique no longer ap-
ply when the shock is moving. To locate a shock with

the previous method, it is necessary to assume that the

observer is traveling with the shock and all velocities

are measured with respect to this translating frame of
reference. However, since all velocities are calculated

in the model frame, there has to be a correction ap-

plied to the test equation to account for the moving

shock. The equation 1 shows what this term must be,
basically a time derivative of the pressure.

1 1 Dp _ l ldp M.vP
+ -- (1)

[VP]aDt IVPladt IVP I

It is more computationally expensive to approxi-

mate time derivatives directly, since that would require
the storage of multiple time steps. So, the time deriva-
tive of pressure was calculated based on relations that

equate it to a spacial variation of the state variables.

Equation 2 applies to isentropic flows.

dp -- a2dp (2)

This equation is then used along with the conservation
of mass equation to produce an equation for an invari-

ant test quantity that can be used to locate moving
shocks.

dp a 2
dt -- _7 "(Pq-_ (3)

From equations 2 and 3, equation 1 becomes:

1 1 Dp 1]_[' _TP

I V Pl a Dt - aT-_-_l _7 "(Pq_ + 1_T P---_ (4)

A shock is then located when this quantity equals or
exceeds one.

In the general case, pressure can be related to the in-

ternal energy and velocity of the flow with equation 5.

= (7 - l)[pE- l(pq__.P (p¢)] (5)
P

Taking the time derivative of this quantity will yield
the required correction term, equation 6.

2/ = (-y-l)[(pE)-
d, _ 1 .,do,

¢" -_[Pq) + _q'-_l (6)

Substituting equation 3 into equation 6, and replacing
the time derivatives with their equivalents from the

mass and momenum equations yields equation 7.

-_ = (_- 1)[- V'(tgn) +

1 2
¢' (V P + VP_ - _q V "(Pq_)] (7)

This is the generalized correction term needed for
transient problems.

Test Cases

Translating normal shock in a tube

A model of a moving normal shock in a channel was

created to investigate the behavior of the shock finding
algorithm and the effect of the transient modification.

Two separate runs were done, the first had the initial

conditions shown in the figure 10.

P2/Pl - 5

M1 ffi3

Shock

ul [ws U2
,,

I

-2.0 h x 2.0

Fig. 10 Transient shock model

Shock relations were used to set up the initial condi-

tions for the model. The formulas for moving normal

shock waves with constant Cp and Cv were applica-
ble in this case. However, these formula assume that

the upstream speed, U1 is 0, so a correction had to be

made to produce the correct initial conditions for the

flow. For the first run, the pressure ratio was chosen

to be less than the pressure ratio required for a stand-

ing shock in M=3 flow (10.33). This required that the

shock move toward the right in the positive X direc-

tion. The speed of the shock traveling into a stationary

fluid, W, was calculated with the equation 8. Since the

upstream velocity was not zero, the actual speed of the
shock had to be corrected with equation 9.

/7 + l(P2 -1)+1 (8)

4 OF 10

w, = u1 - w 0)

The shock test scalar was calculated with the isen-

tropic transient correction equation (equation 4), that

was simplified for this particular example. The Y com-

ponent of velocity was assumed to be zero in this case,

so the divergence term simplified to the following.

1 1Dp 1 d fff._TP

I v PI a nt = + ---':-Iv PI (10)

The derivative of the density times the X velocity

was then expanded, yielding the final equation.

1 1 Dp 1 ,du dPu. ffl. vP (11)
[v Pla Dt ---a_t_xP+_x)4- i_7-_

Results indicated that the pressure variation across

the shock has some interesting features that are prob-

lematic for the shock finding algorithm. The shock

started at X=0, and is moving to the right in the posi-

tive X direction. As it moves, the shorter wavelengths

that makeup the initial discontinuity move at a slower

speed than the longer wavelengths. This difference
in speed is a numerical artifact of the time stepping

method used in the CFD solver. As time progresses,

high frequency pressure oscillations show up behind a

moving shock, as shown in the figure 11.

e.le Bmmdary]

LIP/-

&ls-

e.t;t.
-2j .lX_ 1.17 _ _ i.h ill

Pressure distributionFig. 11

Figure 12 is a plot of the shock scalar with the isen-

tropic transient correction. A filter has been applied to

eliminate the pressure gradients caused by dispersion.

The dashed line on this and following figures repre-

sents the threshold for a shock. Everything above one

,7_lllm

is marked as a shock region.
9.34 - Iloundal

?.71B -

6.23-

4,67-

3.11 -

I._6-

$Jm
-... -,:. 4_,

Fig. 12 Shock scalar

Figure 13 is a plot of the same quantity after a few

more iterations. The shock is clearly moving to the

right, as expected.

II.13 -

t_

4,Ol -

2.4i8 -

],,.lil_

O.Ill
-l_lt

Shock scalar at delta t

The results of this experiment point to the impor-

tance of choosing a threshold value for the magnitude

of the pressure gradient. Because of the slower wave
speeds of the higher frequency pressure waves, oscil-

lations in the pressure gradient take place behind the

shock. These pressure gradient increases are enough

to skew the results and show up in the shock detection

values as a group of shocks behind the actual position

as shown in figure 14.
3AD-

2Al_-

1,1_-

.IKMI -

-I.9_ -

-2._ +

Fig. 14
ent

._ ,,_

Shock scalar on unfiltered pressure gradi-

From the above experiment, it was noted that it did

not matter if the transient correction was used or not,
a shock would still be indicated. This was because the

upstream mach number was greater than one, mak-

ing the uncorrected normal mach number greater than

one. A change in initial conditions was made to see

what happens when the upstream mach number is

less than one. The upstream roach number was set

to 0.9,and the pressure difference was set to 3.0, which
will produce a normal shock moving in the negative X

direction of figure 10.

The results are shown in the following two figures.

In the figure 15, the normal mach number is plotted

against the x-axis. Notice that the normal mach num-

ber does not exceed one, which by the previous test

indicates that no shock is present in the flow. How-
ever, the shock test scalar in figure 16 does exceed

one at the shock, indicating that the shock is indeed

present. The correction term has made it possible to
locate the shock.

The experimental results were then compared to the

theoretical location of the shock at any given time,

calculated with the following equation, where × is the

location, t is time and 1478 is calculated with equa-
tions 8 and 9.

X = W,t 02)

Figure 17 is a plot of the difference between theo-

5 OF 10

Fig. 15
$-_4-

7.715

_.23

4_7-

3.11

LN ,
-2_ °lJ$

Fig. 16

Normal roach number vs location

Beunda E _lFI

4.67 elm ,_ zl,

Shock test variable vs. location

retical and measured shock location vs. time. The

experimental shock location was measured two ways,

first by the location of the maximum pressure gradi-

ent magnitude, and secondly by central location of the
_hnck ro_i_n.

0.015

0.01

0.005

0

._-o._

_0.01

4_.015

_D.02 •

-0.025]

0

Fig. 17
tion

I I l I

0.2 0.6 0.8 1 1.2

time

Theoretical vs. experimental shock loea-

Since the shock region actually covers about 3 cells

in width, or 0.09 units, the theoretical shock loca-
tion and pressure gradient maximum both occur well

within the region at all times.

Filtering

The previous results show that this shock finding al-

gorithm produces some falsely indicated shock regions.
This is partially due to small numerical errors in the

gradient away from the shock. As the gradient of pres-

sure goes to zero in the far field, errors in the shock

test function build as shown in the following equation,

where 6 is a small variation in the quantity.

Mn(vP+JvP) JvP
, o(1) (13)

]vP+6vP] [6vP]

To remove these false indications, three filtering
techniques have been applied to the problem. The

techniques start with an iso-surface constructed where

the value of the shock test scalar is 1.0 and reject a
subset of the triangles that makeup that surface. The

first technique enforces the property that the pressure

gradient is normal to the shock surface. This tech-

nique removes all shock surface triangles that do not

pass the test in the following equation, where n is the

normal of the surface triangle, and c is a threshold
value between 0 and 1.

IvP.nl
IvPl _<c (14)

The second technique removes all iso-surface triangles

that fall below a certain pressure gradient magnitude
threshold. This technique is based on the fact that

shock discontinuites should only occur in regions of
relatively high gradients. The problem is to determine

the meaning of a 'relatively' large gradient and set an
appropriate threshold. To accomplish this, all the tri-

angles were divided into groups based on the value of

the pressure gradient magnitude at their centers. The

count of triangles in each group forms a curve. The
threshold was chosen where the derivative of this curve

goes to zero. This method of setting a threshold as-
sumes that the actual shock surface is located in a

region of high gradients and that changing the thresh-

old by some small amount will not change the number
of triangles in the surface.

Note that setting a pressure gradient magnitude
threshold can be done before the shock iso-surface is

constructed by applying the filter to the nodal shock

scalar values. If the node does not pass the pressure
gradient magnitude test, the shock value can be set to

0. Applying a filter to the nodal values has the ad-

vantage of producing a more connected shock surface,
without disjoint triangles missing.

A third technique removes all the triangles that do

not have jumps in density and temperature that corre-

spond to normal shock relations. For a moving normal

shock, equations 15 and 16 state the relationships be-

tween the pressure jump across the shock and density

and temperature ratio, respectively.

P2 1 + 2_-_ _.
"r--1 pl

Pl _ + _. (15)
"I--1 Pl

T2 />2 =___ + e_Pl

T_"= Pl 1 + Z.._ P.z (16)
7--1Pl

The difficulty with this filtering technique is that
the extent of the shock needs to be known before

hand, so that the pressure, temperature and density

ratios can be accurately measured. To overcome this

problem, a number of measurements of the pressure
temperature and density were made on both sides of

the surface triangles, then the two measurements that
best fit the shock relations were used to determine if

6OF 10

the triangle should be rejected. A fitness function was

constructed that, given the measured pressure ratio at

two points on either side of the triangle, compares the
measured temperature ratio to the temperature ratio

computed with equation 16 and the measured density
ratio with the computed density ratio of equation 15
and produces a value of 1.0 in the case where the mea-

surements match theory, and less than 1.0 otherwise.

f(pl,p2,T1,T2,pl,p2) <= 1.0 (17)

If none of the points on either side of the triangle can

produce a fitness value of greater than some threshold,
the triangle is removed.

To compare the filtering techniques, a measure of
difference between the shock test value fields was con-

structed. The comparison works from a baseline that is

assumed to be the actual shock, then the comparison

is run against the results of the unfiltered algorithm

and the solution with the various types of filtering.

The difference measure is constructed by gathering the

centerpoints of all the triangles in the shock surface,
F, then all the points that have a shock value greater
than 1 in the basline and test solution are removed

from F. The total difference value is the sum of the

absolute value of the difference between the values of

the baseline and test solution at the points in C. The
final comparison function takes the total difference and

divides it by the final number of triangles in the shock
surface.

c= -.NF (18)
Figures 18 19 20 show the results of applying some

of the filtering techniques, and why they are neces-

sary. In this case, the solution being examined is an
invicid converged flow on a 300,000 element fl8 air-

craft model traveling in subsonic flow. Because the

solution has run to convergence, the stationary and

transient shock finding algorithms should produce the
same results, which as figure 19 shows, is not the case.

The transient algorithm generates noise and false in-

dications. However, these false signals can be removed

with filtering to produce a shock surface that is very

similar to the stationary shock finding results. Fig-

ure 20 shows the results of running the transient shock
finder through a pressure gradient magnitude filter.

Table 2 is a collection of the results from passing the
transient shock finder through various combinations of

the three filtering algorithms.

The results in table 2 indicate that the pressure gra-
dient magnitude filter alone is better than when used

in combination with the other two. This became more

evident in looking at the graphical output, where there

would be a fairly continuous shock surface at the end of

the pressure gradient magnitude filter, with some ad-

ditional outliers. Applying the normal filter or jump
condition filter to these results did not get rid of the
outliers, but only removed some of the surface trian-

gles enclosing the shock region, making the final result

Fig. 18 Stationary shock algorithm on converged
solution

Fig. 19 Transient shock algorithm without filter-
ing

Fig. 20 Transient shock algorithm with pressure
gradient magnitude filtering

test case Comparison function
value

no filtering 0.57

[_7 P[filter 0.105

[X7 P] anct normal 0.223
filter

IV P[and'jump fil- 0.104
ter

jump filter 0.567

Table 2 Filtering study results

7 OF 10

worsethanthantheresultfromthepressuregradient
magnitudefilteralone.
TransonicAircraft

Thetransientmodificationsweretestedonarela-
tively large(1 millionelement)modelof anaircraft
travelingin transonicconditions(mach0.85)to seeif
theunsteadyshockfindingalgorithmcouldproduce
usefulresultsona realisticmodel.Figure21shows
theresultsof applyingthesteadystateshockfinding
algorithmto theconvergedsolution.An iso-surface
hasbeenconstructedwherethenormalmachnumber
equalsone,andthis iso-surfaceis paintedwith the
pressuregradientmagnitudeasan indicationof the
shockstrength.Notethatthethicknessoftheseshock
regionsis quitesmalldueto thehighlyrefinedmesh.
Figure22is ofthesamemodel,but theiso-surfaceis
nowplottedon theresultsfromtheunsteadyshock
algorithm.

Sincethesolutionhasconverged,theunsteadyand
steadyshockresultsshouldbeidentical.Whilethis
wastrueof thelargershockfeatures,theunsteadyal-
gorithmalsoproducedsomefalseindications.It was
necessarytothresholdout theseregionswith thepres-
suregradientmagnitude.Evenwhenthiswasdone,
somefalseindicationsremained,especiallyat thelead-
ing andtrailingedgesof thewing.Thisresultwasin
agreementwith theonedimensionalresults,whereit
wasalsonecessarytofilteroutthegradientscausedby
dispersionin theresults.

The shockfindercapturedsomefairly complex
shockstructuresthatwouldbedifficultto findalmost
anyotherway.

Acknowledgments

This has been an extension of the work done by
David Darmofai 3 and professor Mark Drela was in-

strumental in finding the unsteady extensions to the

basic algorithm.

Funding for this project has been provided by NASA

Ames, through grant number NCC2-985, and by the
Army under grant DAAG55-97-1-0394. Additional

support for this research was obtained from the IBM

SUR Project and the IBM UUP Project.

References

1Kwan-Liu, Ma Van Rosendale, John Vermeer, Villein "3D
Shock Wave Visualization on Unstructured Grids"

2Anderson, John D Jr.,'Modern Compressible Flow with
Historical Perspective" McGraw-Hill, 1982

3Darmofal, David,"Hierarchal Visualization of Three-
Dimensional Vortical Flow Calculations" MIT 1991

4pagendarm, H-G B. Seitz: in P
Palamidese(ed.) :" Visualization in Scientific Computing"
Ellis Horwood Workshop Series, 1993

5Walatka, P.P. Burning, P.G. Elson, Pierce L.,"Plot3D
Users Manual, NASA TM 101067" July 1992

6L. Hesselink, Y. Levy, Rajesh Batra,"Automatic Flow Fea-
ture Extraction for use in Computational Steering of Aerody*
namic Design Processes" http://www-leland.stanford.edu/rba-
tra/ics/ics.ht ml

Conclusions

The stationary shock finding algorithm does not

produce a shock surface that would reflect the shape
of the shock in the physical flow, but because of nu-

merical approximation, shows a shock region. The

thickness of the region can give information about the
quality of the solution and location of needed mesh

refinement. Any disperson and dissipation in the so-
lution is reflected in the shape and size of the shock

region.

The nature of the solutions and the suceptability
of the shock detector to small errors in the solutions

makes filtering a requirement, especially in transient

solutions. Filtering to enforce jump conditions and
shock direction is not as attractive and effective as a

simple threshold on the pressure gradient magnitude.

The heuristic method of automatically determining
this threshold that is presented in this paper was ef-
fective on the models tested.

Shock finding based on fluid dynamic principles is

practical, with some advantages over more general

edge detection, but still requires filtering of the results.

8 OF 10

Fig. 21 Steady shock detection results

9OF 10

Fig. 22 Unsteady shock detection results

10 OF 10

